版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省海安市南莫中学数学高一第二学期期末监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.方程表示的曲线是()A.一个圆 B.两个圆 C.半个圆 D.两个半圆2.已知函数,则函数的最小正周期为()A. B. C. D.3.下列函数中,在上存在最小值的是()A. B. C. D.4.如图,正方体的棱长为1,线段上有两个动点E、F,且,则下列结论中错误的是A.B.C.三棱锥的体积为定值D.5.已知a、b、c分别是△ABC的内角A、B、C的对边,若,则的形状为()A.钝角三角形 B.直角三角形 C.锐角三角形 D.等边三角形6.某高中三个年级共有3000名学生,现采用分层抽样的方法从高一、高二、高三年级的全体学生中抽取一个容量为30的样本进行视力健康检查,若抽到的高一年级学生人数与高二年级学生人数之比为3∶2,抽到高三年级学生10人,则该校高二年级学生人数为()A.600 B.800 C.1000 D.12007.已知两点,,直线过点且与线段相交,则直线的斜率的取值范围是()A. B.C. D.或8.已知,则等于()A. B. C. D.39.如图,各棱长均为的正三棱柱,、分别为线段、上的动点,且平面,,中点轨迹长度为,则正三棱柱的体积为()A. B. C.3 D.10.已知数列的通项公式是,则该数列的第五项是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设函数,则使得成立的的取值范围是_______________.12.函数的图象过定点______.13.在平面直角坐标系中,点到直线的距离为______.14.若数列满足,且,则___________.15.秦九韶是我国南宋著名数学家,在他的著作《数书九章》中有己知三边求三角形面积的方法:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上以小斜幂乘大斜幂减上,余四约之,为实一为从陽,开平方得积.”如果把以上这段文字写成公式就是,其中是的内角的对边为.若,且,则面积的最大值为________.16.如图,在三棱锥中,它的每个面都是全等的正三角形,是棱上的动点,设,分别记与,所成角为,,则的取值范围为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知抛物线的焦点为,过的直线交轴正半轴于点,交抛物线于两点,其中点在第一象限.(Ⅰ)求证:以线段为直径的圆与轴相切;(Ⅱ)若,,,求的取值范围.18.如图所示,在平面四边形中,为正三角形.(1)在中,角的对边分别为,若,求角的大小;(2)求面积的最大值.19.在中,角所对的边分别为,且.(1)求边长;(2)若的面积为,求边长.20.已知函数f(x)=(1+)sin2x-2sin(x+)sin(x-).(1)若tanα=2,求f(α);(2)若x∈[,],求f(x)的取值范围21.在平面直角坐标系中,已知点,,坐标分别为,,,为线段上一点,直线与轴负半轴交于点,直线与交于点.(1)当点坐标为时,求直线的方程;(2)求与面积之和的最小值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】原方程即即或故原方程表示两个半圆.2、D【解题分析】
根据二倍角公式先化简,再根据即可。【题目详解】由题意得,所以周期为.所以选择D【题目点拨】本题主要考查了二倍角公式;常考的二倍角公式有正弦、余弦、正切。属于基础题。3、A【解题分析】
结合初等函数的单调性,逐项判定,即可求解,得到答案.【题目详解】由题意,函数,当时,取得最小值,满足题意;函数在为单调递增函数,所以函数在区间无最小值,所以B不正确;函数在为单调递增函数,所以函数在区间无最小值,所以C不正确;函数在为单调递增函数,所以函数在区间无最小值,所以D不正确.故选:A.【题目点拨】本题主要考查了函数的最值问题,其中解答中熟记基本初等函数的单调性,合理判定是解答的关键,着重考查了推理与运算能力,属于基础题.4、D【解题分析】可证,故A正确;由∥平面ABCD,可知,B也正确;连结BD交AC于O,则AO为三棱锥的高,,三棱锥的体积为为定值,C正确;D错误。选D。5、A【解题分析】
将原式进行变形,再利用内角和定理转化,最后可得角B的范围,可得三角形形状.【题目详解】因为在三角形中,变形为由内角和定理可得化简可得:所以所以三角形为钝角三角形故选A【题目点拨】本题考查了解三角形,主要是公式的变形是解题的关键,属于较为基础题.6、B【解题分析】
根据题意可设抽到高一和高二年级学生人数分别为和,则,继而算出抽到的各年级人数,再根据分层抽样的原理可以推得该校高二年级的人数.【题目详解】根据题意可设抽到高一和高二年级学生人数分别为和,则,即,所以高一年级和高二年级抽到的人数分别是12人和8人,则该校高二年级学生人数为人.故选:.【题目点拨】本题考查分层抽样的方法,属于容易题.7、D【解题分析】
作出示意图,再结合两点间的斜率公式,即可求得答案.【题目详解】,,又直线过点且与线段相交,作图如下:则由图可知,直线的斜率的取值范围是:或.故选:D【题目点拨】本题借直线与线段的交点问题,考查两点间的斜率公式,考查理解辨析能力,属于中档题.8、C【解题分析】
等式分子分母同时除以即可得解.【题目详解】由可得.故选:C.【题目点拨】本题考查了三角函数商数关系的应用,属于基础题.9、D【解题分析】
设的中点分别为,判断出中点的轨迹是等边三角形的高,由此计算出正三棱柱的边长,进而计算出正三棱柱的体积.【题目详解】设的中点分别为,连接.由于平面,所以.当时,中点为平面的中心,即的中点(设为点)处.当时,此时的中点为的中点.所以点的轨迹是三角形的高.由于三角形是等边三角形,而,所以.故正三棱柱的体积为.故选:D【题目点拨】本小题主要考查线面平行的有关性质,考查棱柱的体积计算,考查空间想象能力,考查分析与解决问题的能力,属于中档题.10、A【解题分析】
代入即可得结果.【题目详解】解:由已知,故选:A.【题目点拨】本题考查数列的项和项数之间的关系,是基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
根据函数的表达式判断出函数为偶函数,判断函数在的单调性为递增,根据偶函数的对称性可得,解绝对值不等式即可.【题目详解】解:,定义域为,因为,所以函数为偶函数.当时,易知函数在为增函数,根据偶函数的性质可知:由可知,所以,解得:或.故答案为:.【题目点拨】本题考查偶函数的性质和利用偶函数对称性的特点解决问题,属于基础题.12、【解题分析】
令真数为,求出的值,代入函数解析式可得出定点坐标.【题目详解】令,得,当时,.因此,函数的图象过定点.故答案为:.【题目点拨】本题考查对数型函数图象过定点问题,一般利用真数为来求得,考查计算能力,属于基础题.13、2【解题分析】
利用点到直线的距离公式即可得到答案。【题目详解】由点到直线的距离公式可知点到直线的距离故答案为2【题目点拨】本题主要考查点到直线的距离,熟练掌握公式是解题的关键,属于基础题。14、【解题分析】
对已知等式左右取倒数可整理得到,进而得到为等差数列;利用等差数列通项公式可求得,进而得到的通项公式,从而求得结果.【题目详解】,即数列是以为首项,为公差的等差数列故答案为:【题目点拨】本题考查利用递推公式求解数列通项公式的问题,关键是明确对于形式的递推关系式,采用倒数法来进行推导.15、【解题分析】
根据正弦定理和余弦定理,由可得,再由及函数求最值的知识,即可求解.【题目详解】,又,,时,面积的最大值为.故答案为:【题目点拨】本题主要考查了正弦定理、余弦定理在解三角形中的应用,考查了理解辨析能力与运算求解能力,属于中档题.16、【解题分析】
作交于,连接,可得是与所成的角根据等腰三角形的性质,作交于,同理可得,根据,的关系即可得解.【题目详解】解:作交于,连接,因为三棱锥中,它的每个面都是全等的正三角形,为正三角形,,,是与所成的角,根据等腰三角形的性质.作交于,同理可得,则,∵,∴,得.故答案为:【题目点拨】本题考查异面直线所成的角,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)证明见解析;(Ⅱ).【解题分析】
试题分析:(Ⅰ)题意实质上证明线段的中点到轴的距离等于线段长的一半,根据抛物线的定义设可证得;(Ⅱ)同样设,,把已知,用坐标表示出来,消去坐标及,得出与的关系,此时就可得出的取值范围.试题解析:(Ⅰ)由已知,设,则,圆心坐标为,圆心到轴的距离为,圆的半径为,所以,以线段为直径的圆与轴相切.(Ⅱ)解法一:设,由,,得,,所以,,由,得.又,,所以.代入,得,,整理得,代入,得,所以,因为,所以的取值范围是.解法二:设,,将代入,得,所以(*),由,,得,,所以,,,将代入(*)式,得,所以,.代入,得.因为,所以的取值范围是.考点:抛物线的定义,抛物线的焦点弦问题.18、(1);(2).【解题分析】
(1)由正弦和角公式,化简三角函数表达式,结合正弦定理即可求得角的大小;(2)在中,设,由余弦定理及正弦定理用表示出.再根据三角形面积公式表示出,即可结合正弦函数的图像与性质求得最大值.【题目详解】(1)由题意可得:∴整理得∴∴∴又∴(2)在中,设,由余弦定理得:,∵为正三角形,∴,在中,由正弦定理得:,∴,∴,∵,∵,∴为锐角,,,,∵∴当时,.【题目点拨】本题考查了三角函数式的化简变形,正弦定理与余弦定理在解三角形中的应用,三角形面积的表示方法,正弦函数的图像与性质的综合应用,属于中档题.19、(1);(2).【解题分析】试题分析:本题主要考查正弦定理、余弦定理、特殊角的三角函数值、三角形面积公式等基础知识,同时考查考生的分析问题解决问题的能力和运算求解能力.第一问,利用正弦定理将边换成角,消去,解出角C,再利用解出边b的长;第二问,利用三角形面积公式,可直接解出a边的值,再利用余弦定理解出边c的长.试题解析:(Ⅰ)由正弦定理得,又,所以,.因为,所以.…6分(Ⅱ)因为,,所以.据余弦定理可得,所以.…12分考点:正弦定理、余弦定理、特殊角的三角函数值、三角形面积公式.20、(1);(2)[0,].【解题分析】
(1)f(x)=·sin2x-2(sinx+cosx)(sinx-cosx)=sin2x+cosxsinx-sin2x+cos2x=sinxcosx+cos2x,∴f(α)====.(2)由(1)知,f(x)=cos2x+sinxcosx=+=sin(2x+)+,∵≤x≤,≤2x+≤,-≤sin(2x+)≤1,0≤f(x)≤,∴f(x)∈[0,].本试题组要是考查了三角函数的运用.21、(1);(2).【解题分析】
(1)求出的直线方程后可得的坐标,再求出的直线方程和的直线方程后可得的坐标,从而得到直线的直线方程.(2)直线的方程为,设,求出的直线方程后可得的坐标,从而可用表示,换元后利用基本不等式可求的最小值.【题目详解】(1)当时,直线的方程为,所以,直线的方程为①,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东海洋大学《幼儿园玩教具设计与制作》2023-2024学年第一学期期末试卷
- 广东工商职业技术大学《中国经济前沿(英语)》2023-2024学年第一学期期末试卷
- 小学生劳动课种花课件
- 《非平稳信号分析》课件
- 赣西科技职业学院《材料力学D》2023-2024学年第一学期期末试卷
- 赣南师范大学《多媒体影像创作》2023-2024学年第一学期期末试卷
- 赣东学院《生化工厂设计》2023-2024学年第一学期期末试卷
- 七年级生物上册第二单元生物体的结构层次第二章细胞怎样构成生物体第三节植物体的结构层次教案新版新人教版
- 七年级语文上册第一单元1春教案新人教版
- 七年级道德与法治上册第三单元师长情谊第七课亲情之爱第3课时误区警示新人教版
- 2024-2025学年七年级上学期语文期末考前押题卷(统编版2024+含答案)
- 土建定额培训课件
- ISO 56001-2024《创新管理体系-要求》专业解读与应用实践指导材料之13:“6策划-6.2创新目标及其实现的策划”(雷泽佳编制-2025B0)
- 二年级上册《语文园地八》日积月累
- 2024年保护环境的建议书范文(33篇)
- 2024年中国PVC鞋底料市场调查研究报告
- 退休人员公益活动合作合同
- 四年级数学(四则混合运算带括号)计算题专项练习与答案
- 2022年期货从业资格《期货基础知识》考试题库(含典型题)
- 浙江省湖州市2023-2024学年高二上学期期末调研测试数学试题 含解析
- 商业街价格策略与收益预测
评论
0/150
提交评论