2023年江苏省南京市建邺三校联合九年级数学第一学期期末达标测试试题含解析_第1页
2023年江苏省南京市建邺三校联合九年级数学第一学期期末达标测试试题含解析_第2页
2023年江苏省南京市建邺三校联合九年级数学第一学期期末达标测试试题含解析_第3页
2023年江苏省南京市建邺三校联合九年级数学第一学期期末达标测试试题含解析_第4页
2023年江苏省南京市建邺三校联合九年级数学第一学期期末达标测试试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年江苏省南京市建邺三校联合九年级数学第一学期期末达标测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在菱形中,,,,则的值是()A. B.2 C. D.2.对于反比例函数,下列说法不正确的是()A.图像分布在第一、三象限 B.当时,随的增大而减小C.图像经过点 D.若点都在图像上,且,则3.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现1点的概率B.抛一枚硬币,出现正面的概率C.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率D.任意写一个整数,它能被2整除的概率4.如图,AC为⊙O的直径,AB为⊙O的弦,∠A=35°,过点C的切线与OB的延长线相交于点D,则∠D=()A.20° B.30° C.40° D.35°5.半径为10的⊙O和直线l上一点A,且OA=10,则直线l与⊙O的位置关系是()A.相切 B.相交 C.相离 D.相切或相交6.已知,下列变形错误的是()A. B. C. D.7.如图,点P是矩形ABCD的边上一动点,矩形两边长AB、BC长分别为15和20,那么P到矩形两条对角线AC和BD的距离之和是()A.6 B.12 C.24 D.不能确定8.如图,DE是的中位线,则与的面积的比是A.1:2B.1:3C.1:4D.1:99.小明同学对数据26,36,46,5■,52进行统计分析,发现其中一个两位数的个位数字被墨水涂污看不到了,则分析结果与被涂污数字无关的是()A.平均数 B.方差 C.中位数 D.众数10.已知点P是线段AB的黄金分割点(AP>PB),AB=4,那么AP的长是()A. B. C. D.11.将抛物线y=﹣5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为()A.y=﹣5(x+1)2﹣1 B.y=﹣5(x﹣1)2﹣1 C.y=﹣5(x+1)2+3 D.y=﹣5(x﹣1)2+312.抛物线y=x2+2x-2最低点坐标是()A.(2,-2) B.(1,-2) C.(1,-3) D.(-1,-3)二、填空题(每题4分,共24分)13.如图,为了测量河宽AB(假设河的两岸平行),测得∠ACB=30°,∠ADB=60°,CD=60m,则河宽AB为m(结果保留根号).14.一元二次方程x2﹣x﹣=0配方后可化为__________.15.若点A(﹣4,y1)、B(﹣2,y2)、C(2,y3)都在反比例函数的图象上,则y1、y2、y3的大小关系是_________.16.二次函数的图象如图所示,给出下列说法:①;②方程的根为,;③;④当时,随值的增大而增大;⑤当时,.其中,正确的说法有________(请写出所有正确说法的序号).17.如图,菱形的边长为1,,以对角线为一边,在如图所示的一侧作相同形状的菱形,再依次作菱形,菱形,……,则菱形的边长为_______.18.用一个半径为10的半圆,围成一个圆锥的侧面,该圆锥的底面圆的半径为_____.三、解答题(共78分)19.(8分)如图,是的直径,点在的延长线上,平分交于点,且的延长线,垂足为点.(1)求证:直线是的切线;(2)若,,求的长.20.(8分)如图,AB是⊙O的直径,弦CD⊥AB于点E,G是上一动点,AG,DC的延长线交于点F,连接AC,AD,GC,GD.(1)求证:∠FGC=∠AGD;(2)若AD=1.①当AC⊥DG,CG=2时,求sin∠ADG;②当四边形ADCG面积最大时,求CF的长.21.(8分)如图,AB是⊙O的直径,OD垂直弦AC于点E,且交⊙O于点D,F是BA延长线上一点,若∠CDB=∠BFD.(1)求证:FD∥AC;(2)试判断FD与⊙O的位置关系,并简要说明理由;(3)若AB=10,AC=8,求DF的长.22.(10分)某商店经销的某种商品,每件成本为30元.经市场调查,当售价为每件70元时,可销售20件.假设在一定范围内,售价每降低2元,销售量平均增加4件.如果降价后商店销售这批商品获利1200元,问这种商品每件售价是多少元?23.(10分)已知:二次函数,求证:无论为任何实数,该二次函数的图象与轴都在两个交点;24.(10分)黎托社区在创建全国卫生城市的活动中,随机检查了本社区部分住户10月份某周内“垃圾分类”的实施情况,将他们绘制了两幅不完整的统计图(.小于5天;.5天;.6天;.7天).(1)扇形统计图部分所对应的圆心角的度数是______.(2)12月份雨花区将举行一场各社区之间“垃圾分类”知识抢答赛,黎托社区准备从甲、乙、丙、丁四户家庭以抽签的形式选取两户家庭参赛,求甲、丙两户家庭恰好被抽中的概率.25.(12分)在中,.(1)如图①,点在斜边上,以点为圆心,长为半径的圆交于点,交于点,与边相切于点.求证:;(2)在图②中作,使它满足以下条件:①圆心在边上;②经过点;③与边相切.(尺规作图,只保留作图痕迹,不要求写出作法)26.如图,在平面直角坐标系中,的顶点坐标分别为(6,4),(4,0),(2,0).(1)在轴左侧,以为位似中心,画出,使它与的相似比为1:2;(2)根据(1)的作图,=.

参考答案一、选择题(每题4分,共48分)1、B【分析】由菱形的性质得AD=AB,由,求出AD的长度,利用勾股定理求出DE,即可求出的值.【详解】解:在菱形中,有AD=AB,∵,AE=ADAD3,∴,∴,∴,∴,∴;故选:B.【点睛】本题考查了三角函数,菱形的性质,以及勾股定理,解题的关键是根据三角函数值正确求出菱形的边长,然后进行计算即可.2、D【分析】根据反比例函数图象的性质对各选项分析判断后即可求解.【详解】解:A、k=8>0,∴它的图象在第一、三象限,故本选项正确,不符合题意;B、k=8>0,当x>0时,y随x的增大而减小,故本选项正确,不符合题意;C、∵,∴点(-4,-2)在它的图象上,故本选项正确,不符合题意;D、点A(x1,y1)、B(x2、y2)都在反比例函数的图象上,若x1<x2<0,则y1>y2,故本选项错误,符合题意.故选D.【点睛】本题考查了反比例函数的性质,对于反比例函数,(1)k>0,反比例函数图象在一、三象限,在每一个象限内,y随x的增大而减小;(2)k<0,反比例函数图象在第二、四象限内,在每一个象限内,y随x的增大而增大.3、C【解析】解:A.掷一枚正六面体的骰子,出现1点的概率为,故此选项错误;B.掷一枚硬币,出现正面朝上的概率为,故此选项错误;C.从一装有2个白球和1个红球的袋子中任取一球,取到红球的概率是:≈0.33;故此选项正确;D.任意写出一个整数,能被2整除的概率为,故此选项错误.故选C.4、A【解析】∵∠A=35°,∴∠COB=70°,∴∠D=90°-∠COB=20°.故选A.5、D【分析】根据直线和圆的位置关系来判断.【详解】设圆心到直线l的距离为d,则d≤10,当d=10时,d=r,直线与圆相切;当r<10时,d<r,直线与圆相交,所以直线与圆相切或相交.故选D点睛:本题考查了直线与圆的位置关系,①直线和圆相离时,d>r;②直线和圆相交时,d<r;③直线和圆相切时,d=r(d为圆心到直线的距离),反之也成立.6、B【解析】根据比例式的性质,即可得到答案.【详解】∵⇔,⇔,⇔,⇔,∴变形错误的是选项B.故选B.【点睛】本题主要考查比例式的性质,掌握比例式的内项之积等于外项之积,是解题的关键.7、B【分析】由矩形ABCD可得:S△AOD=S矩形ABCD,又由AB=15,BC=20,可求得AC的长,则可求得OA与OD的长,又由S△AOD=S△APO+S△DPO=OA•PE+OD•PF,代入数值即可求得结果.【详解】连接OP,如图所示:∵四边形ABCD是矩形,∴AC=BD,OA=OC=AC,OB=OD=BD,∠ABC=90°,S△AOD=S矩形ABCD,∴OA=OD=AC,∵AB=15,BC=20,∴AC===25,S△AOD=S矩形ABCD=×15×20=75,∴OA=OD=,∴S△AOD=S△APO+S△DPO=OA•PE+OD•PF=OA•(PE+PF)=×(PE+PF)=75,∴PE+PF=1.∴点P到矩形的两条对角线AC和BD的距离之和是1.故选B.【点睛】本题考查了矩形的性质、勾股定理、三角形面积.熟练掌握矩形的性质和勾股定理是解题的关键.8、C【分析】由中位线可知DE∥BC,且DE=BC;可得△ADE∽△ABC,相似比为1:2;根据相似三角形的面积比是相似比的平方,即得结果.【详解】解:∵DE是△ABC的中位线,∴DE∥BC,且DE=BC,∴△ADE∽△ABC,相似比为1:2,∵相似三角形的面积比是相似比的平方,∴△ADE与△ABC的面积的比为1:4.故选C.【点睛】本题要熟悉中位线的性质及相似三角形的判定及性质,牢记相似三角形的面积比是相似比的平方.9、C【分析】利用平均数、中位数、方差和标准差的定义对各选项进行判断.【详解】解:这组数据的平均数、方差和标准差都与被涂污数字有关,而这组数据的中位数为46,与被涂污数字无关.故选:C.【点睛】本题考查了方差:它也描述了数据对平均数的离散程度.也考查了中位数、平均数和众数的概念.掌握以上知识是解题的关键.10、A【解析】根据黄金比的定义得:,得.故选A.11、A【解析】分析:直接利用二次函数图象与几何变换的性质分别平移得出答案.详解:将抛物线y=-5x2+1向左平移1个单位长度,得到y=-5(x+1)2+1,再向下平移2个单位长度,所得到的抛物线为:y=-5(x+1)2-1.故选A.点睛:此题主要考查了二次函数图象与几何变换,正确记忆平移规律是解题关键.12、D【分析】利用配方法把抛物线的一般式转化为顶点式,再写出顶点坐标即可.【详解】∵,且,

∴最低点(顶点)坐标是.

故选:D.【点睛】此题考查利用顶点式求函数的顶点坐标,注意根据函数的特点灵活运用适当的方法解决问题.二、填空题(每题4分,共24分)13、【详解】解:∵∠ACB=30°,∠ADB=60°,

∴∠CAD=30°,

∴AD=CD=60m,

在Rt△ABD中,

AB=AD•sin∠ADB=60×=(m).故答案是:.14、【分析】移项,配方,即可得出选项.【详解】x2﹣x﹣=0x2﹣x=x2﹣x+=+故填:.【点睛】本题考查了解一元二次方程的应用,能正确配方是解此题的关键.15、y2>y1>y1【分析】根据反比例函数的图象和性质,即可得到答案.【详解】∵反比例函数的比例系数k<0,∴在每一个象限内,y随x的增大而增大,∵点A(﹣4,y1)、B(﹣2,y2)、C(2,y1)都在反比例函数的图象上,∴y2>y1>0,y1<0,∴y2>y1>y1.故答案是:y2>y1>y1.【点睛】本题主要考查反比例函数的图象和性质,掌握反比例函数的增减性,是解题的关键.16、①②④【分析】根据抛物线的对称轴判断①,根据抛物线与x轴的交点坐标判断②,根据函数图象判断③④⑤.【详解】解:∵对称轴是x=-=1,∴ab<0,①正确;∵二次函数y=ax2+bx+c的图象与x轴的交点坐标为(-1,0)、(3,0),∴方程x2+bx+c=0的根为x1=-1,x2=3,②正确;∵当x=1时,y<0,∴a+b+c<0,③错误;由图象可知,当x>1时,y随x值的增大而增大,④正确;当y>0时,x<-1或x>3,⑤错误,故答案为①②④.【点睛】本题考查的是二次函数图象与系数之间的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.17、【解析】过点作垂直OA的延长线与点,根据“直角三角形30°所对的直角边等于斜边的一半”求出,同样的方法求出和的长度,总结规律即可得出答案.【详解】过点作垂直OA的延长线与点根据题意可得,,则,∴在RT△中,又为菱形的对角线∴,故菱形的边长为;过点作垂直的延长线与点则,∴,∴在RT△中,又为菱形的对角线∴,故菱形的边长为;过点作垂直的延长线与点则,∴,∴在RT△中,又为菱形的对角线∴,故菱形的边长为;……∴菱形的边长为;故答案为.【点睛】本题考查的是菱形,难度较高,需要熟练掌握“在直角三角形中,30°的角所对的直角边等于斜边的一半”这一基本性质.18、5【解析】试题解析:∵半径为10的半圆的弧长为:×2π×10=10π∴围成的圆锥的底面圆的周长为10π设圆锥的底面圆的半径为r,则2πr=10π解得r=5三、解答题(共78分)19、(1)见解析;(2)【分析】(1)连接OC,由角平分线的性质和等腰三角形的性质可得∠DAC=∠EAC,可得AE∥OC,由平行线的性质可得∠OCD=90°,可得结论;

(2)利用勾股定理得出CD,再利用平行线分线段成比例进行计算即可.【详解】证明:(1)连接∵,∴,∵,∴,∴,∵∴,∴,∴是的切线(2)∵,∴,又∵,∴∵,∴∴∴∴.【点睛】此题考查切线的判定和性质,等腰三角形的性质,平行线分线段成比例,熟练运用切线的判定和性质是解题的关键.20、(1)证明见解析;(2)①sin∠ADG=;②CF=1.【分析】(1)由垂径定理可得CE=DE,CD⊥AB,由等腰三角形的性质和圆内接四边形的性质可得∠FGC=∠ADC=∠ACD=∠AGD;(2)①如图,设AC与GD交于点M,证△GMC∽△AMD,设CM=x,则DM=3x,在Rt△AMD中,通过勾股定理求出x的值,即可求出AM的长,可求出sin∠ADG的值;②S四边形ADCG=S△ADC+S△ACG,因为点G是上一动点,所以当点G在的中点时,△ACG的的底边AC上的高最大,此时△ACG的面积最大,四边形ADCG的面积也最大,分别证∠GAC=∠GCA,∠F=∠GCA,推出∠F=∠GAC,即可得出FC=AC=1.【详解】证明:(1)∵AB是⊙O的直径,弦CD⊥AB,∴CE=DE,CD⊥AB,∴AC=AD,∴∠ADC=∠ACD,∵四边形ADCG是圆内接四边形,∴∠ADC=∠FGC,∵∠AGD=∠ACD,∴∠FGC=∠ADC=∠ACD=∠AGD,∴∠FGC=∠AGD;(2)①如图,设AC与GD交于点M,∵,∴∠GCM=∠ADM,又∵∠GMC=∠AMD,∴△GMC∽△AMD,∴===,设CM=x,则DM=3x,由(1)知,AC=AD,∴AC=1,AM=1﹣x,在Rt△AMD中,AM2+DM2=AD2,∴(1﹣x)2+(3x)2=12,解得,x1=0(舍去),x2=,∴AM=1﹣=,∴sin∠ADG===;②S四边形ADCG=S△ADC+S△ACG,∵点G是上一动点,∴当点G在的中点时,△ACG的底边AC上的高最大,此时△ACG的面积最大,四边形ADCG的面积也最大,∴GA=GC,∴∠GAC=∠GCA,∵∠GCD=∠F+∠FGC,由(1)知,∠FGC=∠ACD,且∠GCD=∠ACD+∠GCA,∴∠F=∠GCA,∴∠F=∠GAC,∴FC=AC=1.【点睛】本题考查的是圆的有关性质、垂径定理、解直角三角形等,熟练掌握圆的有关性质并灵活运用是解题的关键.21、(1)证明见解析;(2)FD是⊙O的切线,理由见解析;(3)DF.【分析】(1)因为∠CDB=∠CAB,∠CDB=∠BFD,所以∠CAB=∠BFD,即可得出FD∥AC;(2)利用圆周角定理以及平行线的判定得出∠FDO=90°,进而得出答案;(3)利用垂径定理得出AE的长,再利用相似三角形的判定与性质得出FD的长.【详解】解:(1)∵∠CDB=∠CAB,∠CDB=∠BFD,∴∠CAB=∠BFD,∴FD∥AC,(2)∵∠AEO=90°,FD∥AC,∴∠FDO=90°,∴FD是⊙O的一条切线(3)∵AB=10,AC=8,DO⊥AC,∴AE=EC=4,AO=5,∴EO=3,∵AE∥FD,∴△AEO∽△FDO,∴,∴,解得:DF.【点睛】本题主要考查了相似三角形的判定与性质、垂径定理、圆周角定理以及平行线的判定,掌握相似三角形的判定与性质、垂径定理、圆周角定理以及平行线的判定是解题的关键.22、每件商品售价60元或50元时,该商店销售利润达到1200元.【分析】根据题意得出,(售价-成本)(原来的销量+2降低的价格)=1200,据此列方程求解即可.【详解】解:设每件商品应降价元时,该商店销售利润为1200元.根据题意,得整理得:,解这个方程得:,.所以,或50答:每件商品售价60元或50元时,该商店销售利润达到1200元.【点睛】本题考查的知识点是生活中常见的商品打折销售问题,弄清题目中的关键概念,找出题目中隐含的等量关系式是解决问题的关键.23、见解析【分析】计算判别式,并且配方得到△=,然后根据判别式的意义得到结论.【详解】二次函数∵,,,∴,而,∴,即为任何实数时,方程都有两个不等的实数根,∴二次函数的图象与轴都有两个交点.【点睛】本题考查了抛物线与轴的交点:把求二次函数是常数,与轴的交点坐标问题转化为解关于的一元二次方程.24、(1)108度;(2).

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论