2023-2024学年重庆市涪陵区第十九中学数学九上期末考试模拟试题含解析_第1页
2023-2024学年重庆市涪陵区第十九中学数学九上期末考试模拟试题含解析_第2页
2023-2024学年重庆市涪陵区第十九中学数学九上期末考试模拟试题含解析_第3页
2023-2024学年重庆市涪陵区第十九中学数学九上期末考试模拟试题含解析_第4页
2023-2024学年重庆市涪陵区第十九中学数学九上期末考试模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年重庆市涪陵区第十九中学数学九上期末考试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.已知,如图,E(-4,2),F(-1,-1).以O为位似中心,按比例尺1:2把△EFO缩小,点E的对应点)的坐标()A.(-2,1) B.(2,-1) C.(2,-1)或(-2,-1) D.(-2,1)或(2,-1)2.如图,在△ABC中,∠BAC=90°,AB=AC=4,以点C为中心,把△ABC逆时针旋转45°,得到△A′B′C,则图中阴影部分的面积为()A.2 B.2π C.4 D.4π3.某射击运动员在同一条件下的射击成绩记录如表:射击次数1002004001000“射中9环以上”的次数78158321801“射中9环以上”的频率0.780.790.80250.801根据表中数据,估计这位射击运动员射击一次时“射中9环以上”的概率为()A.0.78 B.0.79 C.0.85 D.0.804.下列运算中,正确的是()A.x3+x=x4 B.(x2)3=x6 C.3x﹣2x=1 D.(a﹣b)2=a2﹣b25.如图所示的几何体的主视图为()A. B. C. D.6.一元二次方程x(3x+2)=6(3x+2)的解是()A.x=6 B.x=﹣ C.x1=6,x2=﹣ D.x1=﹣6,x2=7.如图所示,已知为的直径,直线为圆的一条切线,在圆周上有一点,且使得,连接,则的大小为()A. B. C. D.8.点点同学对数据25,43,28,2□,43,36,52进行统计分析,发现其中一个两位数的个位数被墨水涂污看不到了,则计算结果与涂污数字无关的是()A.平均数 B.中位数 C.方差 D.众数9.给出四个实数,2,0,-1,其中负数是(

)A. B.2 C.0 D.-110.如图,AD是的一条角平分线,点E在AD上.若,,则与的面积比为()A.1:5 B.5:1 C.3:20 D.20:3二、填空题(每小题3分,共24分)11.若点C是线段AB的黄金分割点且AC>BC,则AC=_____AB(用含无理数式子表示).12.计算:cos245°-tan30°sin60°=______.13.已知函数,当时,函数的最小值是-4,实数的取值范围是______.14.如图,若被击打的小球飞行高度(单位:)与飞行时间(单位:)之间具有的关系为,则小球从飞出到落地所用的时间为_____.15.若⊙O的直径是4,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是_________.16.已知抛物线与x轴只有一个公共点,则m=___________.17.在本赛季比赛中,某运动员最后六场的得分情况如下:17、15、21、28、12、19,则这组数据的方差为______.18.计算_________.三、解答题(共66分)19.(10分)如图,为测量小岛A到公路BD的距离,先在点B处测得∠ABD=37°,再沿BD方向前进150m到达点C,测得∠ACD=45°,求小岛A到公路BD的距离.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)20.(6分)如图是反比例函数y=的图象,当-4≤x≤-1时,-4≤y≤-1.(1)求该反比例函数的表达式;(2)若点M,N分别在该反比例函数的两支图象上,请指出什么情况下线段MN最短(不需要证明),并注出线段MN长度的取值范围.21.(6分)数学活动课上,老师和学生一起去测量学校升旗台上旗杆AB的高度,如图,老师测得升旗台前斜坡FC的坡比为iFC=1:10(即EF:CE=1:10),学生小明站在离升旗台水平距离为35m(即CE=35m)处的C点,测得旗杆顶端B的仰角为α,已知tanα=,升旗台高AF=1m,小明身高CD=1.6m,请帮小明计算出旗杆AB的高度.22.(8分)已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).(1)求证:AC=BD;(2)若大圆的半径R=10,小圆的半径r=8,且圆O到直线AB的距离为6,求AC的长.23.(8分)平面直角坐标系xOy中,二次函数y=x2﹣2mx+m2+2m+2的图象与x轴有两个交点.(1)当m=﹣2时,求二次函数的图象与x轴交点的坐标;(2)过点P(0,m﹣1)作直线1⊥y轴,二次函数图象的顶点A在直线l与x轴之间(不包含点A在直线l上),求m的范围;(3)在(2)的条件下,设二次函数图象的对称轴与直线l相交于点B,求△ABO的面积最大时m的值.24.(8分)如图,在△ABC中,∠C=90°,DE⊥AB于E,DF⊥BC于F.求证:△DEH∽△BCA.25.(10分)如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C,已知实数m、n(m<n)分别是方程x2﹣2x﹣3=0的两根.(1)求抛物线的解析式;(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD、BD①当△OPC为等腰三角形时,求点P的坐标;②求△BOD面积的最大值,并写出此时点D的坐标.26.(10分)在平面直角坐标系中,将二次函数的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与轴交于点、(点在点的左侧),,经过点的一次函数的图象与轴正半轴交于点,且与抛物线的另一个交点为,的面积为1.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点在一次函数的图象下方,求面积的最大值,并求出此时点E的坐标;(3)若点为轴上任意一点,在(2)的结论下,求的最小值.

参考答案一、选择题(每小题3分,共30分)1、D【分析】由E(-4,2),F(-1,-1).以O为位似中心,按比例尺1:2把△EFO缩小,根据位似图形的性质,即可求得点E的对应点的坐标.【详解】解:∵E(-4,2),以O为位似中心,按比例尺1:2把△EFO缩小,∴点E的对应点的坐标为:(-2,1)或(2,-1).故选D.【点睛】本题考查位似变换;坐标与图形性质,利用数形结合思想解题是关键.2、B【解析】根据阴影部分的面积是(扇形CBB'的面积﹣△CA'B'的面积)+(△ABC的面积﹣扇形CAA'的面积),代入数值解答即可.【详解】∵在△ABC中,∠BAC=90°,AB=AC=4,∴BC=AB2+AC2=42,∠ACB=∠∴阴影部分的面积=45π·(42)故选B.【点睛】本题考查了扇形面积公式的应用,观察图形得到阴影部分的面积是(扇形CBB'的面积﹣△CA'B'的面积)+(△ABC的面积﹣扇形CAA'的面积)是解决问题的关键.3、D【分析】根据大量的实验结果稳定在0.8左右即可得出结论.【详解】∵从频率的波动情况可以发现频率稳定在0.1附近,∴这名运动员射击一次时“射中9环以上”的概率是0.1.故选:D.【点睛】本题考查利用频率估计概率,在相同的条件下做大量重复试验,一个事件A出现的次数和总的试验次数n之比,称为事件A在这n次试验中出现的频率.当试验次数n很大时,频率将稳定在一个常数附近.n越大,频率偏离这个常数较大的可能性越小.这个常数称为这个事件的概率.4、B【解析】试题分析:A、根据合并同类法则,可知x3+x无法计算,故此选项错误;B、根据幂的乘方的性质,可知(x2)3=x6,故正确;C、根据合并同类项法则,可知3x-2x=x,故此选项错误;D、根据完全平方公式可知:(a-b)2=a2-2ab+b2,故此选项错误;故选B.考点:1、合并同类项,2、幂的乘方运算,3、完全平方公式5、B【分析】根据三视图的定义判断即可.【详解】解:所给几何体是由两个长方体上下放置组合而成,所以其主视图也是上下两个长方形组合而成,且上下两个长方形的宽的长度相同.故选B.【点睛】本题考查了三视图知识.6、C【分析】根据因式分解法解一元二次方程即可求出答案.【详解】解:∵x(3x+2)=6(3x+2),∴(x﹣6)(3x+2)=0,∴x=6或x=,故选:C.【点睛】本题主要考查因式分解法解一元二次方程,掌握因式分解法是解题的关键.7、C【分析】连接OB,由题意可知,△COB是等边三角形,即可求得∠C,再由三角形内角和求得∠BAC,最后根据切线的性质和余角的定义解答即可.【详解】解:如图:连接OB∵为的直径∴∠ACB=90°又∵AO=OC∴OB=AC=OC∴OC=OB=BC∴△COB是等边三角形∴∠C=60°∴∠BAC=90°-∠C=30°又∵直线为圆的一条切线∴∠CAP=90°∴=∠CAP-∠BAC=60°故答案为C.【点睛】本题主要考查了圆的性质、等边三角形以及切线的性质等知识点,根据题意说明△COB是等边三角形是解答本题的关键.8、B【分析】利用平均数、中位数、方差和标准差的定义对各选项进行判断.【详解】这组数据的平均数、方差和标准差都与第4个数有关,而这组数据从小到大排序后,位于中间位置的数是36,与十位数字是2个位数字未知的两位数无关,∴计算结果与涂污数字无关的是中位数.故选:B.【点睛】本题考查了标准差:样本方差的算术平方根表示样本的标准差,它也描述了数据对平均数的离散程度.也考查了中位数、平均数.9、D【分析】根据负数的定义,负数小于0即可得出答案.【详解】根据题意:负数是-1,故答案为:D.【点睛】此题主要考查了实数,正确把握负数的定义是解题关键.10、C【分析】根据已知条件先求得S△ABE:S△BED=3:2,再根据三角形相似求得S△ACD=S△ABE=S△BED,根据S△ABC=S△ABE+S△ACD+S△BED即可求得.【详解】解:∵AE:ED=3:2,

∴AE:AD=3:5,

∵∠ABE=∠C,∠BAE=∠CAD,

∴△ABE∽△ACD,

∴S△ABE:S△ACD=9:25,

∴S△ACD=S△ABE,

∵AE:ED=3:2,

∴S△ABE:S△BED=3:2,

∴S△ABE=S△BED,

∴S△ACD=S△ABE=S△BED,

∵S△ABC=S△ABE+S△ACD+S△BED=S△BED+S△BED+S△BED=S△BED,

∴S△BDE:S△ABC=3:20,

故选:C.【点睛】本题考查了相似三角形的判定和性质,不同底等高的三角形面积的求法等,等量代换是本题的关键.二、填空题(每小题3分,共24分)11、【分析】直接利用黄金分割的定义求解.【详解】解:∵点C是线段AB的黄金分割点且AC>BC,∴AC=AB.故答案为:.【点睛】本题考查了黄金分割的定义,点C是线段AB的黄金分割点且AC>BC,则,正确理解黄金分割的定义是解题的关键.12、0【分析】直接利用特殊角的三角函数值代入进而得出答案.【详解】=.故答案为0.【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.13、【分析】将二次函数化为顶点式,可知当时,函数的最小值为,再结合当时,函数的最小值是-4,可得的取值范围.【详解】∵,∴抛物线开口向上,当,二次函数的最小值为∵当时,函数的最小值是-4∴的取值范围是:.【点睛】本题考查二次函数的图像和性质,熟练掌握二次函数的图像和性质是解题的关键.14、1.【分析】根据关系式,令h=0即可求得t的值为飞行的时间.【详解】解:依题意,令得:∴得:解得:(舍去)或∴即小球从飞出到落地所用的时间为故答案为1.【点睛】本题考查了二次函数的性质在实际生活中的应用.此题为数学建模题,关键在于读懂小球从飞出到落地即飞行的高度为0时的情形,借助二次函数解决实际问题.此题较为简单.15、相离【解析】r=2,d=3,则直线l与⊙O的位置关系是相离16、【解析】试题分析:根据抛物线解析式可知其对称轴为x=,根据其与x轴只有一个交点,可知其顶点在x轴上,因此可知x=时,y=0,代入可求得m=.点睛:此题主要考查了二次函数的图像与性质,解题关键是明确与x轴只有一个交点的位置是抛物线的顶点在x轴上,因此可求出对称轴代入即可.17、.【分析】先计算出这组数据的平均数,然后根据方差公式求解.【详解】解:平均数=所以方差是S2==故答案为:.【点睛】本题考查方差:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.18、【分析】先分别计算特殊角的三角函数值,负整数指数幂,再合并即可得到答案.【详解】解:故答案为:【点睛】本题考查的是特殊角三角函数的计算,负整数指数幂的运算,掌握以上知识点是解题的关键.三、解答题(共66分)19、1米.【分析】过A作AE⊥CD垂足为E,设AE=x米,再利用锐角三角函数关系得出BE=x,CE=x,根据BC=BE﹣CE,得到关于x的方程,即可得出答案.【详解】解:过A作AE⊥CD垂足为E,设AE=x米,在Rt△ABE中,tan∠B=,∴BE==x,在Rt△ABE中,tan∠ACD=,∴CE==x,∵BC=BE﹣CE,∴x﹣x=150,解得:x=1.答:小岛A到公路BD的距离为1米.【点睛】本题考查了三角函数和一元一次方程的问题,掌握特殊三角函数值和解一元一次方程的方法是解题的关键.20、(1)(2)MN≥4【分析】(1)根据反比例函数自变量与因变量的取值知当x=-4时,y=-1,当x=-1,时y=-4,代入其中一组即可求出反比例函数的解析式;(2)根据反比例函数的中心对称图性知当点M,N都在直线y=x上时,此时线段MN的长度最短,联立y=与y=x即可求出M、N的坐标,再求出此时MN的距离,故线段MN长度的取值范围为MN≥4.【详解】∵反比例函数图象的两支曲线分别位于第一、三象限,∴当-4≤x≤-1时,y随着x的增大而减小,又∵当-4≤x≤-1时,-4≤y≤-1,∴当x=-4时,y=-1,由y=得k=4,∴该反比例函数的表达式为y=.当点M,N都在直线y=x上时,线段MN的长度最短,解,得x1=2,x2=-2,∴点M,N的坐标分别为(2,2),(-2,-2),MN=4,故线段MN长度的取值范围为MN≥4.【点睛】此题主要考查反比例函数的图像,解题的关键是利用变量的取值来确定坐标,从而解出解析式.21、12.1m.【分析】首先根据题意分析图形,本题涉及到两个直角三角形,分别解可得BG与EF的大小,进而求得BE、AE的大小,再利用AB=BE-AE可求出答案.【详解】解:作DG⊥AE于G,则∠BDG=α,易知四边形DCEG为矩形.∴DG=CE=35m,EG=DC=1.6m在直角三角形BDG中,BG=DG•×tanα=35×=15m,∴BE=15+1.6=16.6m.∵斜坡FC的坡比为iFC=1:10,CE=35m,∴EF=35×=3.5,∵AF=1,∴AE=AF+EF=1+3.5=4.5,∴AB=BE-AE=16.6-4.5=12.1m.答:旗杆AB的高度为12.1m.【点睛】本题考查解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.22、(1)证明见解析;(2)8﹣.【分析】(1)过O作OE⊥AB,根据垂径定理得到AE=BE,CE=DE,从而得到AC=BD;(2)由(1)可知,OE⊥AB且OE⊥CD,连接OC,OA,再根据勾股定理求出CE及AE的长,根据AC=AE﹣CE即可得出结论.【详解】解:(1)证明:如答图,过点O作OE⊥AB于点E,∵AE=BE,CE=DE,∴BE﹣DE=AE﹣CE,即AC=BD.(2)由(1)可知,OE⊥AB且OE⊥CD,连接OC,OA,∵OA=10,OC=8,OE=6,∴.∴AC=AE﹣CE=8﹣.【点睛】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.23、(1)抛物线与x轴交点坐标为:(﹣2+,0)(﹣2﹣,0)(2)﹣3<m<﹣1(3)当m=﹣时,S最大=【解析】分析:(1)与x轴相交令y=0,解一元二次方程求解;(2)应用配方法得到顶点A坐标,讨论点A与直线l以及x轴之间位置关系,确定m取值范围.(3)在(2)的基础上表示△ABO的面积,根据二次函数性质求m.详解:(1)当m=﹣2时,抛物线解析式为:y=x2+4x+2令y=0,则x2+4x+2=0解得x1=﹣2+,x2=﹣2﹣抛物线与x轴交点坐标为:(﹣2+,0)(﹣2﹣,0)(2)∵y=x2﹣2mx+m2+2m+2=(x﹣m)2+2m+2∴抛物线顶点坐标为A(m,2m+2)∵二次函数图象的顶点A在直线l与x轴之间(不包含点A在直线l上)∴当直线1在x轴上方时><不等式无解当直线1在x轴下方时解得﹣3<m<﹣1(3)由(1)点A在点B上方,则AB=(2m+2)﹣(m﹣1)=m+3△ABO的面积S=(m+3)(﹣m)=﹣∵﹣<0∴当m=﹣时,S最大=点睛:本题以含有字母系数m的二次函数为背景,考查了二次函数图象性质以及分类讨论、数形结合的数学思想.24、详见解析.【分析】△DEH与△ABC均为直角三角形,可利用等角的余角相等再求出一组锐角对应相等即可.【详解】证明:∵DE⊥AB,DF⊥BC,∴∠D+∠DHE=∠B+∠BHF=90°而∠BHF=∠DHE,∴∠D=∠B,又∵∠DEH=∠C=90°,∴△DEH∽△BCA.【点睛】此题考查的是相似三角形的判定和互余的性质,掌握有两组对应角相等的两个三角形相似和等角的余角相等是解决此题的关键.25、(1)抛物线的解析式为;(2)①P点坐标为P1()或P2()或P2();②D().【分析】(1)首先解方程得出A,B两点的坐标,从而利用待定系数法求出二次函数解析式即可.(2)①首先求出AB的直线解析式,以及BO解析式,再利用等腰三角形的性质得出当OC=OP时,当OP=PC时,点P在线段OC的中垂线上,当OC=PC时分别求出x的值即可.②利用S△BOD=S△ODQ+S△BDQ得出关于x的二次函数,从而得出最值即可.【详解】解:(1)解方程x2﹣2x﹣2=0,得x1=2,x2=﹣1.∵m<n,∴m=﹣1,n=2.∴A(﹣1,﹣1),B(2,﹣2).∵抛物线过原点,设抛物线的解析式为y=ax2+bx.∴,解得:.∴抛物线的解析式为.(2)①设直线AB的解析式为y=kx+b.∴,解得:.∴直线AB的解析式为.∴C点坐标为(0,).∵直线OB过点O(0,0),B(2,﹣2),∴直线OB的解析式为y=﹣x.∵△OPC为等腰三角形,∴OC=OP或OP=PC或OC=PC.设P(x,﹣x).(i)当OC=OP时,,解得(舍去).∴P1().(ii)当OP=PC时,点P在线段OC的中垂线上,∴P2().(iii)当OC=PC时,由,解得(舍去).∴P2().综上所述,P点坐标为P1()或P2()或P2()

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论