版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届四川省成都市新津中学高中毕业班第二次统测数学试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知空间两不同直线、,两不同平面,,下列命题正确的是()A.若且,则 B.若且,则C.若且,则 D.若不垂直于,且,则不垂直于2.是抛物线上一点,是圆关于直线的对称圆上的一点,则最小值是()A. B. C. D.3.已知函数的最小正周期为的图象向左平移个单位长度后关于轴对称,则的单调递增区间为()A. B.C. D.4.设点是椭圆上的一点,是椭圆的两个焦点,若,则()A. B. C. D.5.一个几何体的三视图如图所示,则这个几何体的体积为()A. B.C. D.6.曲线在点处的切线方程为()A. B. C. D.7.设双曲线(a>0,b>0)的右焦点为F,右顶点为A,过F作AF的垂线与双曲线交于B,C两点,过B,C分别作AC,AB的垂线交于点D.若D到直线BC的距离小于,则该双曲线的渐近线斜率的取值范围是()A.B.C.D.8.若复数满足,则(其中为虚数单位)的最大值为()A.1 B.2 C.3 D.49.已知且,函数,若,则()A.2 B. C. D.10.下列结论中正确的个数是()①已知函数是一次函数,若数列通项公式为,则该数列是等差数列;②若直线上有两个不同的点到平面的距离相等,则;③在中,“”是“”的必要不充分条件;④若,则的最大值为2.A.1 B.2 C.3 D.011.已知斜率为的直线与双曲线交于两点,若为线段中点且(为坐标原点),则双曲线的离心率为()A. B.3 C. D.12.自2019年12月以来,在湖北省武汉市发现多起病毒性肺炎病例,研究表明,该新型冠状病毒具有很强的传染性各级政府反应迅速,采取了有效的防控阻击措施,把疫情控制在最低范围之内.某社区按上级要求做好在鄂返乡人员体格检查登记,有3个不同的住户属在鄂返乡住户,负责该小区体格检查的社区诊所共有4名医生,现要求这4名医生都要分配出去,且每个住户家里都要有医生去检查登记,则不同的分配方案共有()A.12种 B.24种 C.36种 D.72种二、填空题:本题共4小题,每小题5分,共20分。13.已知点是抛物线的准线上一点,F为抛物线的焦点,P为抛物线上的点,且,若双曲线C中心在原点,F是它的一个焦点,且过P点,当m取最小值时,双曲线C的离心率为______.14.已知双曲线:(,),直线:与双曲线的两条渐近线分别交于,两点.若(点为坐标原点)的面积为32,且双曲线的焦距为,则双曲线的离心率为________.15.记数列的前项和为,已知,且.若,则实数的取值范围为________.16.已知实数a,b,c满足,则的最小值是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,且.(1)请给出的一组值,使得成立;(2)证明不等式恒成立.18.(12分)在平面直角坐标系xOy中,曲线的参数方程为(,为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线是圆心在极轴上,且经过极点的圆.已知曲线上的点M对应的参数,射线与曲线交于点.(1)求曲线,的直角坐标方程;(2)若点A,B为曲线上的两个点且,求的值.19.(12分)已知函数.(1)当时,求曲线在点处的切线方程;(2)若在上恒成立,求的取值范围.20.(12分)已知函数.(1)当a=2时,求不等式的解集;(2)设函数.当时,,求的取值范围.21.(12分)已知函数.(1)当时,求不等式的解集;(2)若对任意成立,求实数的取值范围.22.(10分)如图所示,在四棱锥中,∥,,点分别为的中点.(1)证明:∥面;(2)若,且,面面,求二面角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】因答案A中的直线可以异面或相交,故不正确;答案B中的直线也成立,故不正确;答案C中的直线可以平移到平面中,所以由面面垂直的判定定理可知两平面互相垂直,是正确的;答案D中直线也有可能垂直于直线,故不正确.应选答案C.2、C【解题分析】
求出点关于直线的对称点的坐标,进而可得出圆关于直线的对称圆的方程,利用二次函数的基本性质求出的最小值,由此可得出,即可得解.【题目详解】如下图所示:设点关于直线的对称点为点,则,整理得,解得,即点,所以,圆关于直线的对称圆的方程为,设点,则,当时,取最小值,因此,.故选:C.【题目点拨】本题考查抛物线上一点到圆上一点最值的计算,同时也考查了两圆关于直线对称性的应用,考查计算能力,属于中等题.3、D【解题分析】
先由函数的周期和图象的平移后的函数的图象性质得出函数的解析式,从而得出的解析式,再根据正弦函数的单调递增区间得出函数的单调递增区间,可得选项.【题目详解】因为函数的最小正周期是,所以,即,所以,的图象向左平移个单位长度后得到的函数解析式为,由于其图象关于轴对称,所以,又,所以,所以,所以,因为的递增区间是:,,由,,得:,,所以函数的单调递增区间为().故选:D.【题目点拨】本题主要考查正弦型函数的周期性,对称性,单调性,图象的平移,在进行图象的平移时,注意自变量的系数,属于中档题.4、B【解题分析】∵∵∴∵,∴∴故选B点睛:本题主要考查利用椭圆的简单性质及椭圆的定义.求解与椭圆性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.5、B【解题分析】
还原几何体可知原几何体为半个圆柱和一个四棱锥组成的组合体,分别求解两个部分的体积,加和得到结果.【题目详解】由三视图还原可知,原几何体下半部分为半个圆柱,上半部分为一个四棱锥半个圆柱体积为:四棱锥体积为:原几何体体积为:本题正确选项:【题目点拨】本题考查三视图的还原、组合体体积的求解问题,关键在于能够准确还原几何体,从而分别求解各部分的体积.6、A【解题分析】
将点代入解析式确定参数值,结合导数的几何意义求得切线斜率,即可由点斜式求的切线方程.【题目详解】曲线,即,当时,代入可得,所以切点坐标为,求得导函数可得,由导数几何意义可知,由点斜式可得切线方程为,即,故选:A.【题目点拨】本题考查了导数的几何意义,在曲线上一点的切线方程求法,属于基础题.7、A【解题分析】
由题意,根据双曲线的对称性知在轴上,设,则由得:,因为到直线的距离小于,所以,即,所以双曲线渐近线斜率,故选A.8、B【解题分析】
根据复数的几何意义可知复数对应的点在以原点为圆心,1为半径的圆上,再根据复数的几何意义即可确定,即可得的最大值.【题目详解】由知,复数对应的点在以原点为圆心,1为半径的圆上,表示复数对应的点与点间的距离,又复数对应的点所在圆的圆心到的距离为1,所以.故选:B【题目点拨】本题考查了复数模的定义及其几何意义应用,属于基础题.9、C【解题分析】
根据分段函数的解析式,知当时,且,由于,则,即可求出.【题目详解】由题意知:当时,且由于,则可知:,则,∴,则,则.即.故选:C.【题目点拨】本题考查分段函数的应用,由分段函数解析式求自变量.10、B【解题分析】
根据等差数列的定义,线面关系,余弦函数以及基本不等式一一判断即可;【题目详解】解:①已知函数是一次函数,若数列的通项公式为,可得为一次项系数),则该数列是等差数列,故①正确;②若直线上有两个不同的点到平面的距离相等,则与可以相交或平行,故②错误;③在中,,而余弦函数在区间上单调递减,故“”可得“”,由“”可得“”,故“”是“”的充要条件,故③错误;④若,则,所以,当且仅当时取等号,故④正确;综上可得正确的有①④共2个;故选:B【题目点拨】本题考查命题的真假判断,主要是正弦定理的运用和等比数列的求和公式、等差数列的定义和不等式的性质,考查运算能力和推理能力,属于中档题.11、B【解题分析】
设,代入双曲线方程相减可得到直线的斜率与中点坐标之间的关系,从而得到的等式,求出离心率.【题目详解】,设,则,两式相减得,∴,.故选:B.【题目点拨】本题考查求双曲线的离心率,解题方法是点差法,即出现双曲线的弦中点坐标时,可设弦两端点坐标代入双曲线方程相减后得出弦所在直线斜率与中点坐标之间的关系.12、C【解题分析】
先将4名医生分成3组,其中1组有2人,共有种选法,然后将这3组医生分配到3个不同的住户中去,有种方法,由分步原理可知共有种.【题目详解】不同分配方法总数为种.故选:C【题目点拨】此题考查的是排列组合知识,解此类题时一般先组合再排列,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
由点坐标可确定抛物线方程,由此得到坐标和准线方程;过作准线的垂线,垂足为,根据抛物线定义可得,可知当直线与抛物线相切时,取得最小值;利用抛物线切线的求解方法可求得点坐标,根据双曲线定义得到实轴长,结合焦距可求得所求的离心率.【题目详解】是抛物线准线上的一点抛物线方程为,准线方程为过作准线的垂线,垂足为,则设直线的倾斜角为,则当取得最小值时,最小,此时直线与抛物线相切设直线的方程为,代入得:,解得:或双曲线的实轴长为,焦距为双曲线的离心率故答案为:【题目点拨】本题考查双曲线离心率的求解问题,涉及到抛物线定义和标准方程的应用、双曲线定义的应用;关键是能够确定当取得最小值时,直线与抛物线相切,进而根据抛物线切线方程的求解方法求得点坐标.14、或【解题分析】
用表示出的面积,求得等量关系,联立焦距的大小,以及,即可容易求得,则离心率得解.【题目详解】联立解得.所以的面积,所以.而由双曲线的焦距为知,,所以.联立解得或故双曲线的离心率为或.故答案为:或.【题目点拨】本题考查双曲线的方程与性质,考查运算求解能力以及函数与方程思想,属中档题.15、【解题分析】
根据递推公式,以及之间的关系,即可容易求得,再根据数列的单调性,求得其最大值,则参数的范围可求.【题目详解】当时,,解得.所以.因为,则,两式相减,可得,即,则.两式相减,可得.所以数列是首项为3,公差为2的等差数列,所以,则.令,则.当时,,数列单调递减,而,,,故,即实数的取值范围为.故答案为:.【题目点拨】本题考查由递推公式求数列的通项公式,涉及数列单调性的判断,属综合困难题.16、【解题分析】
先分离出,应用基本不等式转化为关于c的二次函数,进而求出最小值.【题目详解】解:若取最小值,则异号,,根据题意得:,又由,即有,则,即的最小值为,故答案为:【题目点拨】本题考查了基本不等式以及二次函数配方求最值,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(答案不唯一)(2)证明见解析【解题分析】
(1)找到一组符合条件的值即可;(2)由可得,整理可得,两边同除可得,再由可得,两边同时加可得,即可得证.【题目详解】解析:(1)(答案不唯一)(2)证明:由题意可知,,因为,所以.所以,即.因为,所以,因为,所以,所以.【题目点拨】考查不等式的证明,考查不等式的性质的应用.18、(1)..(2)【解题分析】
(1)先求解a,b,消去参数,即得曲线的直角坐标方程;再求解,利用极坐标和直角坐标的互化公式,即得曲线的直角坐标方程;(2)由于,可设,,代入曲线直角坐标方程,可得的关系,转化,可得解.【题目详解】(1)将及对应的参数,代入得,即,所以曲线的方程为,为参数,所以曲线的直角坐标方程为.设圆的半径为R,由题意,圆的极坐标方程为(或),将点代入,得,即,所以曲线的极坐标方程为,所以曲线的直角坐标方程为.(2)由于,故可设,代入曲线直角坐标方程,可得,,所以.【题目点拨】本题考查了极坐标和直角坐标,参数方程和一般方程的互化以及极坐标的几何意义的应用,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.19、(1);(2)【解题分析】
(1),对函数求导,分别求出和,即可求出在点处的切线方程;(2)对求导,分、和三种情况讨论的单调性,再结合在上恒成立,可求得的取值范围.【题目详解】(1)因为,所以,所以,则,故曲线在点处的切线方程为.(2)因为,所以,①当时,在上恒成立,则在上单调递增,从而成立,故符合题意;②当时,令,解得,即在上单调递减,则,故不符合题意;③当时,在上恒成立,即在上单调递减,则,故不符合题意.综上,的取值范围为.【题目点拨】本题考查了曲线的切线方程的求法,考查了利用导数研究函数的单调性,考查了不等式恒成立问题,利用分类讨论是解决本题的较好方法,属于中档题.20、(1);(2).【解题分析】试题分析:(1)当时;(2)由等价于,解之得.试
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 旅行的策划与感悟
- 2025年度电子产品全球配送与售后维护服务合同4篇
- 2025年度智能环保型厂房出售买卖协议书4篇
- 2025年度文化产业厂房购置及运营合作协议4篇
- 个人借贷抵押协议标准打印版2024年适用版B版
- 2025年度高科技厂房租赁合同(含知识产权保护)标准样本4篇
- 个人专项资金贷款合同范本:2024年版B版
- 2024科技创新项目引荐服务合作合同一
- 2025年度供应链金融合同履行的信用增级担保服务3篇
- 2024版特定担保书增补协议上诉文件版B版
- 课题申报书:GenAI赋能新质人才培养的生成式学习设计研究
- 外配处方章管理制度
- 2025年四川长宁县城投公司招聘笔试参考题库含答案解析
- 骆驼祥子-(一)-剧本
- 《工程勘察设计收费标准》(2002年修订本)
- 全国医院数量统计
- 【MOOC】PLC技术及应用(三菱FX系列)-职教MOOC建设委员会 中国大学慕课MOOC答案
- 2023七年级英语下册 Unit 3 How do you get to school Section A 第1课时(1a-2e)教案 (新版)人教新目标版
- 泌尿科主任述职报告
- 2024年医美行业社媒平台人群趋势洞察报告-医美行业观察星秀传媒
- 第六次全国幽门螺杆菌感染处理共识报告-
评论
0/150
提交评论