版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年贵州省清镇市数学九上期末质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.方程的两根分别是,则等于()A.1 B.-1 C.3 D.-32.某超市一天的收入约为450000元,将450000用科学记数法表示为()A.4.5×106 B.45×105 C.4.5×105 D.0.45×1063.如图,线段AB两个端点的坐标分别是A(6,4),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为()A.(3,2) B.(4,1) C.(3,1) D.(4,2)4.菱形的两条对角线长分别为6,8,则它的周长是()A.5 B.10 C.20 D.245.如图,一张矩形纸片ABCD的长BC=xcm,宽AB=ycm,以宽AB为边剪去一个最大的正方形ABEF,若剩下的矩形ECDF与原矩形ABCD相似,则的值为()A. B. C. D.6.将抛物线向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为()A.B.C.D.7.如图,点C是线段AB的黄金分割点(AC>BC),下列结论错误的是()A. B. C. D.8.如图,点B、D、C是⊙O上的点,∠BDC=130°,则∠BOC是()A.100° B.110° C.120° D.130°9.下列四个图形中,既是中心对称图形,又是轴对称图形的是()A. B. C. D.10.两个相似三角形的对应边分别是15cm和23cm,它们的周长相差40cm,则这两个三角形的周长分别是()A.45cm,85cm B.60cm,100cm C.75cm,115cm D.85cm,125cm二、填空题(每小题3分,共24分)11.已知四条线段a、2、6、a+1成比例,则a的值为_____.12.二次函数y=+2的顶点坐标为.13.已知抛物线,当时,的取值范围是______________14.如图,分别以正五边形ABCDE的顶点A,D为圆心,以AB长为半径画,若,则阴影部分图形的周长为______结果保留.15.若直线与函数的图象有唯一公共点,则的值为__;有四个公共点时,的取值范围是_16.如图,已知∠AOB=30°,在射线OA上取点O1,以点O1为圆心的圆与OB相切;在射线O1A上取点O2,以点O2为圆心,O2O1为半径的圆与OB相切;在射线O2A上取点O3,以点O3为圆心,O3O2为半径的圆与OB相切……,若⊙O1的半径为1,则⊙On的半径是______________.17.如图,等边△ABO的边长为2,点B在x轴上,反比例函数图象经过点A,将△ABO绕点O顺时针旋转a(0°<a<360°),使点A仍落在双曲线上,则a=_____.18.如图所示的网格是正方形网格,线段AB绕点A顺时针旋转α(0°<α<180°)后与⊙O相切,则α的值为_____.三、解答题(共66分)19.(10分)抛物线经过点O(0,0)与点A(4,0),顶点为点P,且最小值为-1.(1)求抛物线的表达式;(1)过点O作PA的平行线交抛物线对称轴于点M,交抛物线于另一点N,求ON的长;(3)抛物线上是否存在一个点E,过点E作x轴的垂线,垂足为点F,使得△EFO∽△AMN,若存在,试求出点E的坐标;若不存在请说明理由.20.(6分)已知:关于x的方程,(1)求证:无论k取任何实数值,方程总有实数根;(2)若等腰三角形ABC的一边长a=1,两个边长b,c恰好是这个方程的两个根,求△ABC的周长.21.(6分)如图,在中,,以为直径作交于于于.求证:是中点;求证:是的切线22.(8分)已知一个二次函数的图象经过A(0,﹣3),B(1,0),C(m,2m+3),D(﹣1,﹣2)四点,求这个函数解析式以及点C的坐标.23.(8分)某政府工作报告中强调,2019年着重推进乡村振兴战略,做优做响湘莲等特色农产品品牌.小亮调查了一家湘潭特产店两种湘莲礼盒一个月的销售情况,A种湘莲礼盒进价72元/盒,售价120元/盒,B种湘莲礼盒进价40元/盒,售价80元/盒,这两种湘莲礼盒这个月平均每天的销售总额为2800元,平均每天的总利润为1280元.(1)求该店平均每天销售这两种湘莲礼盒各多少盒?(2)小亮调查发现,种湘莲礼盒售价每降3元可多卖1盒.若种湘莲礼盒的售价和销量不变,当种湘莲礼盒降价多少元/盒时,这两种湘莲礼盒平均每天的总利润最大,最大是多少元?24.(8分)某商场试销一种成本为每件60元的服装,经试销发现,每天的销售量(件)与销售单价(元)的关系符合次函数.(1)如果要实现每天2000元的销售利润,该如何确定销售单价?(2)销售单价为多少元时,才能使每天的利润最大?其每天的最大利润是多少?25.(10分)如图,抛物线y=ax2+bx+c经过△ABC的三个顶点,与y轴相交于(0,),点A坐标为(-1,2),点B是点A关于y轴的对称点,点C在x轴的正半轴上.(1)求该抛物线的函数解析式;(2)点F为线段AC上一动点,过点F作FE⊥x轴,FG⊥y轴,垂足分别为点E,G,当四边形OEFG为正方形时,求出点F的坐标;(3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动,设平移的距离为t,正方形的边EF与AC交于点M,DG所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN是等腰三角形?若存在,求t的值;若不存在,请说明理由.26.(10分)如图,在中,,点为边的中点,请按下列要求作图,并解决问题:(1)作点关于的对称点;(2)在(1)的条件下,将绕点顺时针旋转,①面出旋转后的(其中、、三点旋转后的对应点分别是点、、);②若,则________.(用含的式子表示)
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据一元二次方程根与系数的关系,即可得到答案.【详解】解:∵的两根分别是,∴,故选:B.【点睛】本题考查了一元二次方程根与系数的关系,解题的关键是熟练掌握一元二次方程根与系数的关系进行解题.2、C【分析】根据科学记数法的表示方法表示即可.【详解】将150000用科学记数法表示为1.5×2.故选:C.【点睛】本题考查科学记数法的表示,关键在于牢记科学记数法的表示方法.3、A【解析】试题分析:∵线段AB的两个端点坐标分别为A(6,4),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴端点C的横坐标和纵坐标都变为A点的一半,∴端点C的坐标为:(3,2).故选A.考点:1.位似变换;2.坐标与图形性质.4、C【分析】根据菱形的对角线互相垂直且平分这一性质解题即可.【详解】解:∵菱形的对角线互相垂直且平分,∴勾股定理求出菱形的边长=5,∴菱形的周长=20,故选C.【点睛】本题考查了菱形对角线的性质,属于简单题,熟悉概念是解题关键.5、B【分析】根据相似多边形对应边的比相等,可得到一个方程,解方程即可求得.【详解】∵四边形ABCD是矩形,∴AD=BC=xcm,∵四边形ABEF是正方形,∴EF=AB=ycm,∴DF=EC=(x﹣y)cm,∵矩形FDCE与原矩形ADCB相似,∴DF:AB=CD:AD,即:∴=,故选B.【点睛】本题考查了相似多边形的性质、矩形的性质、翻折变换的性质;根据相似多边形对应边的比相等得出方程是解决本题的关键.6、A【分析】先确定抛物线y=x2的顶点坐标为(0,0),再根据点平移的规律得到点(0,0)平移后所得对应点的坐标为(-2,-1),然后根据顶点式写出平移后的抛物线解析式.【详解】抛物线y=x2的顶点坐标为(0,0),把点(0,0)向左平移1个单位,再向下平移2个单位长度所得对应点的坐标为(-2,-1),所以平移后的抛物线解析式为y=(x+2)2-1.
故选A.7、B【解析】∵AC>BC,∴AC是较长的线段,根据黄金分割的定义可知:=≈0.618,故A、C、D正确,不符合题意;AC2=AB•BC,故B错误,符合题意;故选B.8、A【分析】首先在优弧上取点E,连接BE,CE,由点B、D、C是⊙O上的点,∠BDC=130°,即可求得∠E的度数,然后由圆周角定理,即可求得答案.【详解】解:在优弧上取点E,连接BE,CE,如图所示:
∵∠BDC=130°,
∴∠E=180°-∠BDC=50°,
∴∠BOC=2∠E=100°.
故选A.【点睛】此题考查了圆周角定理以及圆的内接四边形的性质.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.9、D【分析】根据轴对称图形与中心对称图形的概念,并结合图形的特点求解.【详解】解:A、不是轴对称图形,是中心对称图形,故选项错误;
B、不是轴对称图形,是中心对称图形,故选项错误;
C、是轴对称图形,不是中心对称图形,故选项错误;
D、是轴对称图形,是中心对称图形,故选项正确.
故选:D.【点睛】本题考查了中心对称图形与轴对称图形的概念.
轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;
中心对称图形关键是要寻找对称中心,图形旋转180°后与原图重合.10、C【解析】根据相似三角形的周长的比等于相似比列出方程,解方程即可.【详解】设小三角形的周长为xcm,则大三角形的周长为(x+40)cm,
由题意得,,
解得,x=75,
则x+40=115,故选C.二、填空题(每小题3分,共24分)11、3【分析】由四条线段a、2、6、a+1成比例,根据成比例线段的定义,即可得=,即可求得a的值.【详解】解:∵四条线段a、2、6、a+1成比例,∴=,∵a(a+1)=12,解得:a1=3,a2=-4(不符合题意,舍去).故答案为3.【点睛】本题考查了线段成比例的定义:若四条线段a,b,c,d成比例,则有a:b=c:d.12、(1,2).【解析】试题分析:由二次函数的解析式可求得答案.∵y=(x﹣1)2+2,∴抛物线顶点坐标为(1,2).故答案为(1,2).考点:二次函数的性质.13、1≤y<9【分析】根据二次函数的图象和性质求出抛物线在上的最大值和最小值即可.【详解】∴抛物线开口向上∴当时,y有最小值,最小值为1当时,y有最大值,最小值为∴当时,的取值范围是故答案为:.【点睛】本题主要考查二次函数在一定范围内的最大值和最小值,掌握二次函数的图象和性质是解题的关键.14、+1.【详解】解:∵五边形ABCDE为正五边形,AB=1,∴AB=BC=CD=DE=EA=1,∠A=∠D=108°,∴==•πAB=,∴C阴影=++BC=+1.故答案为+1.15、-3【分析】根据函数y=|x2-2x-3|与直线y=x+m的图象之间的位置关系即可求出答案.【详解】解:作出y=|x2-2x-3|的图象,如图所示,∴y=,当直线y=x+m与函数y=|x2-2x-3|的图象只有1个交点时,直线经过点(3,0),将(3,0)代入直线y=x+m,得m=-3,联立,消去y后可得:x2-x+m-3=0,
令△=0,
可得:1-4(m-3)=0,
m=,即m=时,直线y=x+m与函数y=|x2-2x-3|的图象只有3个交点,
当直线过点(-1,0)时,
此时m=1,直线y=x+m与函数y=|x2-2x-3|的图象只有3个交点,
∴直线y=x+m与函数y=|x2-2x-3|的图象有四个公共点时,m的范围为:,故答案为:-3,.【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.16、2n−1【分析】作O1C、O2D、O3E分别⊥OB,易找出圆半径的规律,即可解题.【详解】解:作O1C、O2D、O3E分别⊥OB,∵∠AOB=30°,∴OO1=2CO1,OO2=2DO2,OO3=2EO3,∵O1O2=DO2,O2O3=EO3,∴圆的半径呈2倍递增,∴⊙On的半径为2n−1
CO1,∵⊙O1的半径为1,∴⊙O10的半径长=2n−1,故答案为:2n−1.【点睛】本题考查了圆切线的性质,考查了30°角所对直角边是斜边一半的性质,本题中找出圆半径的规律是解题的关键.17、30°或180°或210°【分析】根据等边三角形的性质,双曲线的轴对称性和中心对称性即可求解.【详解】根据反比例函数的轴对称性,A点关于直线y=x对称,∵△OAB是等边三角形,∴∠AOB=60°,∴AO与直线y=x的夹角是15°,∴a=2×15°=30°时点A落在双曲线上,根据反比例函数的中心对称性,∴点A旋转到直线OA上时,点A落在双曲线上,∴此时a=180°,根据反比例函数的轴对称性,继续旋转30°时,点A落在双曲线上,∴此时a=210°;故答案为:30°或180°或210°.考点:(1)、反比例函数图象上点的坐标特征;(2)、等边三角形的性质;(3)、坐标与图形变化-旋转.18、60°或120°【解析】线段AB绕点A顺时针旋转α(0°<α<180°)后与⊙O相切,切点为C′和C″,连接OC′、OC″,根据切线的性质得OC′⊥AB′,OC″⊥AB″,利用直角三角形30度的判定或三角函数求出∠OAC′=30°,从而得到∠BAB′=60°,同理可得∠OAC″=30°,则∠BAB″=120°.【详解】线段AB绕点A顺时针旋转α(0°<α<180°)后与⊙O相切,切点为C′和C″,连接OC′、OC″,则OC′⊥AB′,OC″⊥AB″,在Rt△OAC′中,∵OC′=1,OA=2,∴∠OAC′=30°,∴∠BAB′=60°,同理可得∠OAC″=30°,∴∠BAB″=120°,综上所述,α的值为60°或120°.故答案为60°或120°.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了旋转的性质和直角三角形的性质.三、解答题(共66分)19、(1)抛物线的表达式为,(或);(1);(3)抛物线上存在点E,使得△EFO∽△AMN,这样的点共有1个,分别是(,)和(,).【分析】(1)由点O(0,0)与点A(4,0)的纵坐标相等,可知点O、A是抛物线上的一对对称点,所以对称轴为直线x=1,又因为最小值是-1,所以顶点为(1,-1),利用顶点式即可用待定系数法求解;(1)设抛物线对称轴交轴于点D、N(,),先求出=45°,由ON∥PA,依据平行线的性质得到=45°,依据等腰直角三角形两直角边的关系可得到=,解出即可得到点N的坐标,再运用勾股定理求出ON的长度;(3)先运用勾股定理求出AM和OM,再用ON-OM得MN,运用相似三角形的性质得到EF:FO的值,设E(,),分点E在第一象限、第二或四象限讨论,依据EF:FO=1:1列出关于m的方程解出即可.【详解】解:(1)∵抛物线经过点O(0,0)与点A(4,0),∴对称轴为直线x=1,又∵顶点为点P,且最小值为-1,,∴顶点P(1,-1),∴设抛物线的表达式为将O(0,0)坐标代入,解得∴抛物线的表达式为,即;(1)设抛物线对称轴交轴于点D,∵顶点P坐标为(1,-1),∴点D坐标为(1,0)又∵A(4,0),∴△ADP是以为直角的等腰直角三角形,=45°又∵ON∥PA,∴=45°∴若设点N的坐标为(,)则=解得,∴点N的坐标为(,)∴(3)抛物线上存在一个点E,使得△EFO∽△AMN,理由如下:连接PO、AM,∵=45°,=90°,∴,又∵由点D坐标为(1,0),得OD=1,∴,又∵=90°,由A(4,0),D(1,0)得AD=1,∴,同理可得,∴,∴AM:MN=:=1:1∵△EFO∽△AMN∴EF:FO=AM:MN=1:1设点E的坐标为(,)(其中),①当点E在第一象限时,,解得,此时点E的坐标为(,),②当点E在第二象限或第四象限时,,解得,此时点E的坐标为(,)综上所述,抛物线上存在一个点E,使得△EFO∽△AMN,这样的点共有1个,分别是(,)和(,).【点睛】本题是二次函数综合题,考查了运用待定系数法求解析式,运用勾股定理求线段长度,二次函数中相似的存在性问题,解题的关键是用点的坐标求出线段长度,并根据线段之间的关系,建立方程解出得到点的坐标.20、(1)证明见解析;(2)△ABC的周长为1.【分析】(1)根据一元二次方程根与判别式的关系即可得答案;(2)分a为底边和a为腰两种情况,当a为底边时,b=c,可得方程的判别式△=0,可求出k值,解方程可求出b、c的值;当a为一腰时,则方程有一根为1,代入可求出k值,解方程可求出b、c的值,根据三角形的三边关系判断是否构成三角形,进而可求出周长.【详解】(1)∵判别式△=[-(k+2)]²-4×2k=k²-4k+4=(k-2)²≥0,∴无论k取任何实数值,方程总有实数根.(2)当a=1为底边时,则b=c,∴△=(k-2)²=0,解得:k=2,∴方程为x2-4x+4=0,解得:x1=x2=2,即b=c=2,∵1、2、2可以构成三角形,∴△ABC的周长为:1+2+2=1.当a=1为一腰时,则方程有一个根为1,∴1-(k+2)+2k=0,解得:k=1,∴方程为x2-3x+2=0,解得:x1=1,x2=2,∵1+1=2,∴1、1、2不能构成三角形,综上所述:△ABC的周长为1.【点睛】本题考查一元二次方程根的判别式及三角形的三边关系.一元二次方程根的情况与判别式△的关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0,方程没有实数根;三角形任意两边之和大于第三边,任意两边之差小于第三边;熟练掌握根与判别式的关系是解题关键.21、(1)详见解析,(2)详见解析【分析】(1)连接AD,利用等腰三角形三线合一即可证明是中点;(2)连接OD,通过三角形中位线的性质得出,则有OD⊥DE,则可证明结论.【详解】(1)连接AD.∵AB是⊙O的直径,∴AD⊥BC,∵AB=AC,∴BD=DC,(2)连接OD.∵AO=BO,BD=DC,∴,∵DE⊥AC,∴OD⊥DE,∴DE是⊙O的切线.【点睛】本题主要考查等腰三角形三线合一和切线的判定,掌握等腰三角形三线合一和切线的判定方法是解题的关键.22、y=2x2+x﹣3,C点坐标为(﹣,0)或(2,7)【解析】设抛物线的解析式为y=ax2+bx+c,把A(0,﹣3),B(1,0),D(﹣1,﹣2)代入可求出解析式,进而求出点C的坐标即可.【详解】设抛物线的解析式为y=ax2+bx+c,把A(0,﹣3),B(1,0),D(﹣1,﹣2)代入得,解得,∴抛物线的解析式为y=2x2+x﹣3,把C(m,2m+3)代入得2m2+m﹣3=2m+3,解得m1=﹣,m2=2,∴C点坐标为(﹣,0)或(2,7).【点睛】本题考查了用待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.23、(1)该店平均每天销售礼盒10盒,种礼盒为20盒;(2)当种湘莲礼盒降价9元/盒时,这两种湘莲礼盒平均每天的总利润最大,最大是1307元.【分析】(1)根据题意,可设平均每天销售礼盒盒,种礼盒为盒,列二元一次方程组即可解题(2)根据题意,可设种礼盒降价元/盒,则种礼盒的销售量为:()盒,再列出关系式即可.【详解】解:(1)根据题意,可设平均每天销售礼盒盒,种礼盒为盒,则有,解得故该店平均每天销售礼盒10盒,种礼盒为20盒.(2)设A种湘莲礼盒降价元/盒,利润为元,依题意总利润化简得∵∴当时,取得最大值为1307,故当种湘莲礼盒降价9元/盒时,这两种湘莲礼盒平均每天的总利润最大,最大是1307元.【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.24、(1)100元;(2)当销售单价定为105元时,可获得最大利润,最大利润是2025元.【分析】(1)根据题意列出方程,解一元二次方程即可;(2)先根据利润=每件的利润×销售量表示出利润,然后利用二次函数的性质求最大值即可.【详解】(1)依题意得:,解得或(不合题意).(2)若每天的利润为元,则,∴当销售单价定为105元时,可获得最大利润,最大利润是2025元.【点睛】本题主要考查二次函数与一元二次方程的应用,掌握解一元二次方程的方法和二次函数的性质是解题的关键.25、(1)y=﹣x2+;(2)(1,1);(3)当△DMN是等腰三角形时,t的值为,3﹣或1.【解析】试题分析:(1)易得抛物线的顶点为(0,),然后只需运用待定系数法,就可求出抛物线的函数关系表达式;(2)①当点F在第一象限时,如图1,可求出点C的坐标,直线AC的解析式,设正方形OEFG的边长为p,则F(p,p),代入直线AC的解析式,就可求出点F的坐标;②当点F在第二象限时,同理可求出点F的坐标,此时点F不在线段AC上,故舍去;(3)过点M作MH⊥DN于H,如图2,由题可得0≤t≤2.然后只需用t的式子表示DN、DM2、MN2,分三种情况(①DN=DM,②ND=NM,③MN=MD)讨论就可解决问题.试题解析:(1)∵点B是点A关于y轴的对称点,∴抛物线的对称轴为y轴,∴抛物线的顶点为(0,),故抛物线的解析式可设为y=ax2+.∵A(﹣1,2)在抛物线y=ax2+上,∴a+=2,解得a=﹣,∴抛物线的函数关系表达式为y=﹣x2+;(2)①当点F在第一象限时,如图1,令y=0得,﹣x2+=0,解得:x1=3,x2=﹣3,∴点C的坐标为(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 猪小弟课件教学课件
- 2024年广西体育馆大院体育用品销售合同
- 2024年建筑工程分包及劳务承包协议
- 2024年度石油天然气开采与销售合同
- 2024年度船舶修造安装工程分包协议
- 2024年度深圳晚辅老师招聘合同
- 2024年布匹交易协议规定
- 04年国际货物买卖合同
- 2024期房购买合同范本
- 2024年度施工现场食品安全管理合同
- 园区出入管理系统施工方案
- 数据可视化说课 高中信息技术
- 混凝土结构施工图平面整体表示方法制图规则和详图
- 2024年二季度灵活就业调查报告
- 中华民族现代文明有哪些鲜明特质?建设中华民族现代文明的路径是什么?参考答案三
- 液压站操作说明书
- 2021至2024年广东新高考化学真题考点分布试题及答案
- 7《小书包》教学设计-2024-2025学年统编版语文一年级上册
- 广安市岳池县2024年上半年“小平故里英才”引进急需紧缺专业人才历年(高频重点复习提升训练)共500题附带答案详解
- 走进摄影智慧树知到答案2024年海南软件职业技术学院
- 2024年人教版五年级上册数学第五单元课后练习题(含答案和概念)
评论
0/150
提交评论