2023-2024学年江苏省泰州市靖江市实验学校数学九上期末联考试题含解析_第1页
2023-2024学年江苏省泰州市靖江市实验学校数学九上期末联考试题含解析_第2页
2023-2024学年江苏省泰州市靖江市实验学校数学九上期末联考试题含解析_第3页
2023-2024学年江苏省泰州市靖江市实验学校数学九上期末联考试题含解析_第4页
2023-2024学年江苏省泰州市靖江市实验学校数学九上期末联考试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年江苏省泰州市靖江市实验学校数学九上期末联考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ADC的度数是()A.80° B.160° C.100° D.40°2.如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF,若∠AOF=40°,则∠F的度数是()A.20° B.35° C.40° D.55°3.在平面直角坐标系中,抛物线经过变换后得到抛物线,则这个变换可以是()A.向左平移2个单位 B.向右平移2个单位C.向左平移8个单位 D.向右平移8个单位4.二次函数的顶点坐标是()A. B. C. D.5.如图1,一个扇形纸片的圆心角为90°,半径为1.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A. B. C. D.6.二次函数的图象的顶点坐标是()A. B. C. D.7.四边形内接于⊙,点是的内心,,点在的延长线上,则的度数为()A.56° B.62° C.68° D.48°8.要使分式有意义,则x应满足的条件是()A.x<2 B.x≠2 C.x≠0 D.x>29.若关于的一元二次方程有实数根,则实数m的取值范围是()A. B. C. D.10.在平面直角坐标系中,点E(﹣4,2),点F(﹣1,﹣1),以点O为位似中心,按比例1:2把△EFO缩小,则点E的对应点E的坐标为(

)A.(2,﹣1)或(﹣2,1) B.(8,﹣4)或(﹣8,4) C.(2,﹣1) D.(8,﹣4)11.已知关于的一元二次方程有两个不相等的实数根,则的取值范围是()A.<2 B.<3 C.<2且≠0 D.<3且≠212.已知:m=+1,n=﹣1,则=()A.±3 B.﹣3 C.3 D.二、填空题(每题4分,共24分)13.如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是的中点,CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE,CB于点P,Q,连接AC,关于下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心,其中结论正确的是________(只需填写序号).14.体育课上,小聪,小明,小智,小慧分别在点O处进行了一次铅球试投,铅球分别落在图中的点A,B,C,D处,则他们四人中,成绩最好的是______.15.如图,在△ABC中,AC=4,BC=6,CD平分∠ACB交AB于D,DE∥BC交AC于E,则DE的长为_____.16.如图,在Rt△ABC中,∠C=90°,边AB的垂直平分线分别交边BC、AB于点D、E如果BC=8,,那么BD=_____.17.正五边形的每个内角为______度.18.半径为2的圆中,60°的圆心角所对的弧的弧长为_____.三、解答题(共78分)19.(8分)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.20.(8分)(1)解方程:;(2)求二次函数的图象与坐标轴的交点坐标.21.(8分)如图,在中,,点是中点.连接.作,垂足为,的外接圆交于点,连接.(1)求证:;(2)过点作圆的切线,交于点.若,求的值;(3)在(2)的条件下,当时,求的长.22.(10分)如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C.(1)求证:PE是⊙O的切线;(2)求证:DE平分∠BEP;(3)若⊙O的半径为10,CF=2EF,求BE的长.23.(10分)如图,已知和中,,,,,;(1)请说明的理由;(2)可以经过图形的变换得到,请你描述这个变换;(3)求的度数.24.(10分)在菱形中,,延长至点,延长至点,使,连结,,延长交于点.(1)求证:;(2)求的度数.25.(12分)已知抛物线与轴交于两点,与轴交于点.(1)求此抛物线的表达式及顶点的坐标;(2)若点是轴上方抛物线上的一个动点(与点不重合),过点作轴于点,交直线于点,连结.设点的横坐标为.①试用含的代数式表示的长;②直线能否把分成面积之比为1:2的两部分?若能,请求出点的坐标;若不能,请说明理由.(3)如图2,若点也在此抛物线上,问在轴上是否存在点,使?若存在,请直接写出点的坐标;若不存在,请说明理由.26.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.

参考答案一、选择题(每题4分,共48分)1、C【分析】根据圆周角定理以及圆内接四边形的性质即可解决问题;【详解】解:∵∠AOC=2∠B,∠AOC=160°,

∴∠B=80°,

∵∠ADC+∠B=180°,

∴∠ADC=100°,

故选:C.【点睛】本题考查圆周角定理、圆内接四边形的性质等知识,解题的关键是熟练掌握基本知识.2、B【解析】连接FB,由邻补角定义可得∠FOB=140°,由圆周角定理求得∠FEB=70°,根据等腰三角形的性质分别求出∠OFB、∠EFB的度数,继而根据∠EFO=∠EBF-∠OFB即可求得答案.【详解】连接FB,则∠FOB=180°-∠AOF=180°-40°=140°,∴∠FEB=∠FOB=70°,∵FO=BO,∴∠OFB=∠OBF=(180°-∠FOB)÷2=20°,∵EF=EB,∴∠EFB=∠EBF=(180°-∠FEB)÷2=55°,∴∠EFO=∠EBF-∠OFB=55°-20°=35°,故选B.【点睛】本题考查了圆周角定理、等腰三角形的性质等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.3、B【分析】根据变换前后的两抛物线的顶点坐标找变换规律.【详解】y=(x+5)(x-3)=(x+1)2-16,顶点坐标是(-1,-16).y=(x+3)(x-5)=(x-1)2-16,顶点坐标是(1,-16).所以将抛物线y=(x+5)(x-3)向右平移2个单位长度得到抛物线y=(x+3)(x-5),故选B.【点睛】此题主要考查了次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.4、B【分析】根据抛物线的顶点式:,直接得到抛物线的顶点坐标.【详解】解:由抛物线为:,抛物线的顶点为:故选B.【点睛】本题考查的是抛物线的顶点坐标,掌握抛物线的顶点式是解题的关键.5、C【解析】连接OD,根据勾股定理求出CD,根据直角三角形的性质求出∠AOD,根据扇形面积公式、三角形面积公式计算,得到答案.【详解】解:连接OD,在Rt△OCD中,OC=OD=2,∴∠ODC=30°,CD=∴∠COD=60°,∴阴影部分的面积=,故选:C.【点睛】本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.6、B【分析】根据二次函数的性质,用配方法求出二次函数顶点式,再得出顶点坐标即可.【详解】解:∵抛物线

=(x+1)2+3

∴抛物线的顶点坐标是:(−1,3).

故选B.【点睛】此题主要考查了利用配方法求二次函数顶点式以及求顶点坐标,此题型是考查重点,应熟练掌握.7、C【分析】由点I是的内心知,,从而求得,再利用圆内接四边形的外角等于内对角可得答案.【详解】∵点I是的内心∴,∵∴∵四边形内接于⊙∴故答案为:C.【点睛】本题考查了三角形的内心,圆内接四边形的性质,掌握三角形内心的性质和圆内接四边形的外角等于内对角是解题的关键.8、B【解析】本题主要考查分式有意义的条件:分母不能为1.【详解】解:∵x﹣2≠1,∴x≠2,故选B.【点睛】本题考查的是分式有意义的条件,当分母不为1时,分式有意义.9、B【分析】因为一元二次方程有实数根,所以,即可解得.【详解】∵一元二次方程有实数根∴解得故选B【点睛】本题考查一元二次方程根的判别式,掌握方程根的个数与根的判别式之间关系是解题关键.10、A【分析】利用位似比为1:2,可求得点E的对应点E′的坐标为(2,-1)或(-2,1),注意分两种情况计算.【详解】∵E(-4,2),位似比为1:2,∴点E的对应点E′的坐标为(2,-1)或(-2,1).故选A.【点睛】本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比.注意位似的两种位置关系.11、D【分析】根据方程有两个不相等的实数根结合二次项系数非0,即可得出关于k的一元一次不等式组,解不等式组即可得出结论.【详解】∵关于x的一元二次方程(k−2)x2−2x+1=0有两个不相等的实数根,∴,解得:k<3且k≠2.故选D.【点睛】本题考查根的判别式,解题突破口是得出关于k的一元一次不等式组.12、C【分析】先根据题意得出和的值,再把式子化成含与的形式,最后代入求值即可.【详解】由题得:、∴故选:C.【点睛】本题考查代数式求值和完全平方公式,运用整体思想是关键.二、填空题(每题4分,共24分)13、②③【解析】试题分析:∠BAD与∠ABC不一定相等,选项①错误;∵GD为圆O的切线,∴∠GDP=∠ABD,又AB为圆O的直径,∴∠ADB=90°,∵CF⊥AB,∴∠AEP=90°,∴∠ADB=∠AEP,又∠PAE=∠BAD,∴△APE∽△ABD,∴∠ABD=∠APE,又∠APE=∠GPD,∴∠GDP=∠GPD,∴GP=GD,选项②正确;由AB是直径,则∠ACQ=90°,如果能说明P是斜边AQ的中点,那么P也就是这个直角三角形外接圆的圆心了.Rt△BQD中,∠BQD=90°-∠6,Rt△BCE中,∠8=90°-∠5,而∠7=∠BQD,∠6=∠5,所以∠8=∠7,所以CP=QP;由②知:∠3=∠5=∠4,则AP=CP;所以AP=CP=QP,则点P是△ACQ的外心,选项③正确.则正确的选项序号有②③.故答案为②③.考点:1.切线的性质;2.圆周角定理;3.三角形的外接圆与外心;4.相似三角形的判定与性质.14、小智【分析】通过比较线段的长短,即可得到OC>OD>OB>OA,进而得出表示最好成绩的点为点C.【详解】由图可得,OC>OD>OB>OA,∴表示最好成绩的点是点C,故答案为:小智.【点睛】本题主要参考了比较线段的长短,比较两条线段长短的方法有两种:度量比较法、重合比较法.15、2.1【分析】由条件可证出DE=EC,证明△AED∽△ACB,利用对应边成比例的知识,可求出DE长.【详解】∵CD平分∠ACB交AB于D,∴∠ACD=∠DCB,又∵DE∥BC,∴∠EDC=∠DCB,∴∠ACD=∠EDC,∴DE=EC,设DE=x,则AE=1﹣x,∵DE∥BC,∴△AED∽△ACB,∴,即,∴x=2.1.故答案为:2.1.【点睛】此题主要考查相似三角形的判定与性质,解题的关键根据相似三角形找到对应线段成比例.16、【解析】:∵在RT△ABC中,∠C=90°,BC=8,tanA=,∴AC=,∴AB=,∵边AB的垂直平分线交边AB于点E,∴BE=,∵在RT△BDE中,∠BED=90°,∴cosB=,∴BD=,故答案为.点睛:本题考查了解直角三角形,线段平分线的性质,掌握直角三角形中边角之间的关系是解答本题的关键.17、1【分析】先求出正五边形的内角和,再根据正五边形的每个内角都相等,进而求出其中一个内角的度数.【详解】解:正五边形的内角和是:(5﹣2)×180°=540°,则每个内角是:540÷5=1°.故答案为:1.【点睛】本题主要考查多边形的内角和计算公式,以及正多边形的每个内角都相等等知识点.18、【解析】根据弧长公式可得:=,故答案为.三、解答题(共78分)19、(1)二次函数的表达式为:y=x2﹣4x+3;(2)点P的坐标为:(0,3+3)或(0,3﹣3)或(0,-3)或(0,0);(3)当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.【分析】(1)把A(1,0)和C(0,3)代入y=x2+bx+c得方程组,解方程组即可得二次函数的表达式;(2)先求出点B的坐标,再根据勾股定理求得BC的长,当△PBC为等腰三角形时分三种情况进行讨论:①CP=CB;②PB=PC;③BP=BC;分别根据这三种情况求出点P的坐标;(3)设AM=t则DN=2t,由AB=2,得BM=2﹣t,S△MNB=×(2﹣t)×2t=﹣t2+2t,把解析式化为顶点式,根据二次函数的性质即可得△MNB最大面积;此时点M在D点,点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.【详解】解:(1)把A(1,0)和C(0,3)代入y=x2+bx+c,解得:b=﹣4,c=3,∴二次函数的表达式为:y=x2﹣4x+3;(2)令y=0,则x2﹣4x+3=0,解得:x=1或x=3,∴B(3,0),∴BC=3,点P在y轴上,当△PBC为等腰三角形时分三种情况进行讨论:如图1,①当CP=CB时,PC=3,∴OP=OC+PC=3+3或OP=PC﹣OC=3﹣3∴P1(0,3+3),P2(0,3﹣3);②当PB=PC时,OP=OB=3,∴P3(0,-3);③当BP=BC时,∵OC=OB=3∴此时P与O重合,∴P4(0,0);综上所述,点P的坐标为:(0,3+3)或(0,3﹣3)或(﹣3,0)或(0,0);(3)如图2,设AM=t,由AB=2,得BM=2﹣t,则DN=2t,∴S△MNB=×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1,当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.20、(1)x1=1+,x2=1﹣;(2)(5,0),(-3,0),(0,-15)【分析】(1)根据一元二次方程的求根公式,即可求解;(2)令y=0,求出x的值,令x=0,求出y的值,进而即可得到答案.【详解】(1)x2﹣2x﹣1=0,∵a=1,b=﹣2,c=﹣1,∴△=b2﹣4ac=4+4=8>0,∴x==,∴x1=1+,x2=1﹣;(2)令y=0,则,即:,解得:,令x=0,则y=-15,∴二次函数的图象与坐标轴的交点坐标为:(5,0),(-3,0),(0,-15).【点睛】本题主要考查一元二次方程的解法和二次函数图象与坐标轴的交点坐标,掌握一元二次方程的求根公式以及求二次函数图象与坐标轴的交点坐标,是解题的关键.21、(1)详见解析;(2)2;(3)5.【分析】(1)根据等腰三角形的判定即可求解;(2)根据切线的性质证明,根据得到,再得到,故,表示出,再根据中,利用的定义即可求解;(3)根据,利用三角函数的定义即可求解.【详解】(1)证明:∵,为中点,∴,∴.又∵,∴,∴.∵,∴,∴,∴.(2)解:∵是的外接圆,且,∴是直径.∵是切线,∴,∵,∴,∴,∵,∴,∴设,,∴.∵,,∴,∴,∴,∴,∴在中,.(3)∵,∴,∴,.∴,.∴,由(1)得∴,∴AG=BG故G为BC中点,∴.【点睛】.此题主要考查圆的综合问题,解题的关键是熟知圆切线的判定、三角函数的定义、相似三角形的判定与性质.22、(1)见解析;(2)见解析;(3)BE=1.【分析】(1)如图,连接OE.欲证明PE是⊙O的切线,只需推知OE⊥PE即可;(2)由圆周角定理得到,根据“同角的余角相等”推知,结合已知条件证得结论;(3)设,则,由勾股定理可求EF的长,即可求BE的长.【详解】(1)如图,连接OE.∵CD是圆O的直径,∴.∵,∴.又∵,即,∴,∴,即,∴,又∵点E在圆上,∴PE是⊙O的切线;(2)∵AB、CD为⊙O的直径,∴,∴(同角的余角相等).又∵,∴,即ED平分∠BEP;(3)设,则,∵⊙O的半径为10,∴,在Rt△OEF中,,即,解得,∴,∴.【点睛】本题考查了圆和三角形的几何问题,掌握切线的性质、圆周角定理和勾股定理是解题的关键.23、(1)见解析(2)绕点顺时针旋转,可以得到(3)【解析】(1)先利用已知条件∠B=∠E,AB=AE,BC=EF,利用SAS可证△ABC≌△AEF,那么就有∠C=∠F,∠BAC=∠EAF,那么∠BAC-∠PAF=∠EAF-∠PAF,即有∠BAE=∠CAF=25°;(2)通过观察可知△ABC绕点A顺时针旋转25°,可以得到△AEF;(3)由(1)知∠C=∠F=57°,∠BAE=∠CAF=25°,而∠AMB是△ACM的外角,根据三角形外角的性质可求∠AMB.【详解】∵,,,∴,∴,,∴,∴;通过观察可知绕点顺时针旋转,可以得到;由知,,∴.【点睛】本题利用了全等三角形的判定、性质,三角形外角的性质,等式的性质等.24、(1)见详解;(2)60°【分析】(1)先判断出△ABC是等边三角形,由等边三角形的性质可得BC=AC,∠ACB=∠ABC,再求出CE=BF,然后利用“边角边”证明即可;

(2)由△ACE≌△CBF,根据全等三角形对应角相等可得∠E=∠F,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠CGE=∠ABC即可.【详解】(1)证明:∵菱形,,∴是等边三角形,∴,,∵,∴,即,在和中,∵,∴.(2)解:∵,∴,∵,∴,∴,∵,∴.【点睛】本题考查了全等三角形的判定与性质,等边三角形的判定与性质,菱形的性质等知识;熟记性质并确定出三角形全等的条件是解题的关键25、(1),顶点坐标为:;(2)①;②能,理由见解析,点的坐标为;(3)存在,点Q的坐标为:或.【分析】(1)根据待定系数法即可求出抛物线的解析式,然后把一般式转化为顶点式即可得出抛物线的顶点坐标;(2)①先利用待定系数法求出直线的函数表达式,再设出点D、E的坐标,然后分点D在y轴右侧和y轴左侧利用或列式化简即可;②根据题意容易判断:点D在y轴左侧时,不存在这样的点;当点D在y轴右侧时,分或两种情况,设出E、F坐标后,列出方程求解即可;(3)先求得点M、N的坐标,然后连接CM,过点N作NG⊥CM交CM的延长线于点G,即可判断∠MCN=45°,则点C即为符合题意的一个点Q,所以另一种情况的点Q应为过点C、M、N的⊙H与y轴的交点,然后根据圆周角定理的推论、等腰直角三角形的性质和勾股定理即可求出CQ的长,进而可得结果.【详解】解:(1)∵抛物线与轴交于点,∴设抛物线的表达式为:,把点代入并求得:,∴抛物线的表达式为:,即,∴抛物线的顶点坐标为:;(2)①设直线的表达式为:,则,解得:,∴直线的表达式为:,设,则

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论