安徽省淮北市相山区师范大学附属实验中学2024届高三高考模拟冲刺卷(提优卷)(一)数学试题_第1页
安徽省淮北市相山区师范大学附属实验中学2024届高三高考模拟冲刺卷(提优卷)(一)数学试题_第2页
安徽省淮北市相山区师范大学附属实验中学2024届高三高考模拟冲刺卷(提优卷)(一)数学试题_第3页
安徽省淮北市相山区师范大学附属实验中学2024届高三高考模拟冲刺卷(提优卷)(一)数学试题_第4页
安徽省淮北市相山区师范大学附属实验中学2024届高三高考模拟冲刺卷(提优卷)(一)数学试题_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省淮北市相山区师范大学附属实验中学2024届高三高考模拟冲刺卷(提优卷)(一)数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,的图象与直线的两个相邻交点的距离等于,则的一条对称轴是()A. B. C. D.2.已知向量,,=(1,),且在方向上的投影为,则等于()A.2 B.1 C. D.03.2019年末,武汉出现新型冠状病毒肺炎()疫情,并快速席卷我国其他地区,传播速度很快.因这种病毒是以前从未在人体中发现的冠状病毒新毒株,所以目前没有特异治疗方法,防控难度很大.武汉市出现疫情最早,感染人员最多,防控压力最大,武汉市从2月7日起举全市之力入户上门排查确诊的新冠肺炎患者、疑似的新冠肺炎患者、无法明确排除新冠肺炎的发热患者和与确诊患者的密切接触者等“四类”人员,强化网格化管理,不落一户、不漏一人.在排查期间,一户6口之家被确认为“与确诊患者的密切接触者”,这种情况下医护人员要对其家庭成员随机地逐一进行“核糖核酸”检测,若出现阳性,则该家庭为“感染高危户”.设该家庭每个成员检测呈阳性的概率均为()且相互独立,该家庭至少检测了5个人才能确定为“感染高危户”的概率为,当时,最大,则()A. B. C. D.4.△ABC中,AB=3,,AC=4,则△ABC的面积是()A. B. C.3 D.5.设复数满足,则()A.1 B.-1 C. D.6.已知定义在上的函数的周期为4,当时,,则()A. B. C. D.7.已知集合,则元素个数为()A.1 B.2 C.3 D.48.已知复数(为虚数单位,),则在复平面内对应的点所在的象限为()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.已知是偶函数,在上单调递减,,则的解集是A. B.C. D.10.已知数列为等比数列,若,且,则()A. B.或 C. D.11.设抛物线上一点到轴的距离为,到直线的距离为,则的最小值为()A.2 B. C. D.312.正方体,是棱的中点,在任意两个中点的连线中,与平面平行的直线有几条()A.36 B.21 C.12 D.6二、填空题:本题共4小题,每小题5分,共20分。13.直线与抛物线交于两点,若,则弦的中点到直线的距离等于________.14.已知的终边过点,若,则__________.15.展开式中,含项的系数为______.16.已知i为虚数单位,复数,则=_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(Ⅰ)当时,讨论函数的单调区间;(Ⅱ)若对任意的和恒成立,求实数的取值范围.18.(12分)设函数()的最小值为.(1)求的值;(2)若,,为正实数,且,证明:.19.(12分)已知数列的前项和为,且点在函数的图像上;(1)求数列的通项公式;(2)设数列满足:,,求的通项公式;(3)在第(2)问的条件下,若对于任意的,不等式恒成立,求实数的取值范围;20.(12分)某保险公司给年龄在岁的民众提供某种疾病的一年期医疗保险,现从名参保人员中随机抽取名作为样本进行分析,按年龄段分成了五组,其频率分布直方图如下图所示;参保年龄与每人每年应交纳的保费如下表所示.据统计,该公司每年为这一万名参保人员支出的各种费用为一百万元.年龄(单位:岁)保费(单位:元)(1)用样本的频率分布估计总体分布,为使公司不亏本,求精确到整数时的最小值;(2)经调查,年龄在之间的老人每人中有人患该项疾病(以此频率作为概率).该病的治疗费为元,如果参保,保险公司补贴治疗费元.某老人年龄岁,若购买该项保险(取中的).针对此疾病所支付的费用为元;若没有购买该项保险,针对此疾病所支付的费用为元.试比较和的期望值大小,并判断该老人购买此项保险是否划算?21.(12分)已知函数的最大值为,其中.(1)求实数的值;(2)若求证:.22.(10分)已知函数,且曲线在处的切线方程为.(1)求的极值点与极值.(2)当,时,证明:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】

由题,得,由的图象与直线的两个相邻交点的距离等于,可得最小正周期,从而求得,得到函数的解析式,又因为当时,,由此即可得到本题答案.【题目详解】由题,得,因为的图象与直线的两个相邻交点的距离等于,所以函数的最小正周期,则,所以,当时,,所以是函数的一条对称轴,故选:D【题目点拨】本题主要考查利用和差公式恒等变形,以及考查三角函数的周期性和对称性.2、B【解题分析】

先求出,再利用投影公式求解即可.【题目详解】解:由已知得,由在方向上的投影为,得,则.故答案为:B.【题目点拨】本题考查向量的几何意义,考查投影公式的应用,是基础题.3、A【解题分析】

根据题意分别求出事件A:检测5个人确定为“感染高危户”发生的概率和事件B:检测6个人确定为“感染高危户”发生的概率,即可得出的表达式,再根据基本不等式即可求出.【题目详解】设事件A:检测5个人确定为“感染高危户”,事件B:检测6个人确定为“感染高危户”,∴,.即设,则∴当且仅当即时取等号,即.故选:A.【题目点拨】本题主要考查概率的计算,涉及相互独立事件同时发生的概率公式的应用,互斥事件概率加法公式的应用,以及基本不等式的应用,解题关键是对题意的理解和事件的分解,意在考查学生的数学运算能力和数学建模能力,属于较难题.4、A【解题分析】

由余弦定理求出角,再由三角形面积公式计算即可.【题目详解】由余弦定理得:,又,所以得,故△ABC的面积.故选:A【题目点拨】本题主要考查了余弦定理的应用,三角形的面积公式,考查了学生的运算求解能力.5、B【解题分析】

利用复数的四则运算即可求解.【题目详解】由.故选:B【题目点拨】本题考查了复数的四则运算,需掌握复数的运算法则,属于基础题.6、A【解题分析】

因为给出的解析式只适用于,所以利用周期性,将转化为,再与一起代入解析式,利用对数恒等式和对数的运算性质,即可求得结果.【题目详解】定义在上的函数的周期为4,当时,,,,.故选:A.【题目点拨】本题考查了利用函数的周期性求函数值,对数的运算性质,属于中档题.7、B【解题分析】

作出两集合所表示的点的图象,可得选项.【题目详解】由题意得,集合A表示以原点为圆心,以2为半径的圆,集合B表示函数的图象上的点,作出两集合所表示的点的示意图如下图所示,得出两个图象有两个交点:点A和点B,所以两个集合有两个公共元素,所以元素个数为2,故选:B.【题目点拨】本题考查集合的交集运算,关键在于作出集合所表示的点的图象,再运用数形结合的思想,属于基础题.8、B【解题分析】

分别比较复数的实部、虚部与0的大小关系,可判断出在复平面内对应的点所在的象限.【题目详解】因为时,所以,,所以复数在复平面内对应的点位于第二象限.故选:B.【题目点拨】本题考查复数的几何意义,考查学生的计算求解能力,属于基础题.9、D【解题分析】

先由是偶函数,得到关于直线对称;进而得出单调性,再分别讨论和,即可求出结果.【题目详解】因为是偶函数,所以关于直线对称;因此,由得;又在上单调递减,则在上单调递增;所以,当即时,由得,所以,解得;当即时,由得,所以,解得;因此,的解集是.【题目点拨】本题主要考查由函数的性质解对应不等式,熟记函数的奇偶性、对称性、单调性等性质即可,属于常考题型.10、A【解题分析】

根据等比数列的性质可得,通分化简即可.【题目详解】由题意,数列为等比数列,则,又,即,所以,,.故选:A.【题目点拨】本题考查了等比数列的性质,考查了推理能力与运算能力,属于基础题.11、A【解题分析】

分析:题设的直线与抛物线是相离的,可以化成,其中是点到准线的距离,也就是到焦点的距离,这样我们从几何意义得到的最小值,从而得到的最小值.详解:由①得到,,故①无解,所以直线与抛物线是相离的.由,而为到准线的距离,故为到焦点的距离,从而的最小值为到直线的距离,故的最小值为,故选A.点睛:抛物线中与线段的长度相关的最值问题,可利用抛物线的几何性质把动线段的长度转化为到准线或焦点的距离来求解.12、B【解题分析】

先找到与平面平行的平面,利用面面平行的定义即可得到.【题目详解】考虑与平面平行的平面,平面,平面,共有,故选:B.【题目点拨】本题考查线面平行的判定定理以及面面平行的定义,涉及到了简单的组合问题,是一中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

由已知可知直线过抛物线的焦点,求出弦的中点到抛物线准线的距离,进一步得到弦的中点到直线的距离.【题目详解】解:如图,直线过定点,,而抛物线的焦点为,,弦的中点到准线的距离为,则弦的中点到直线的距离等于.故答案为:.【题目点拨】本题考查抛物线的简单性质,考查直线与抛物线位置关系的应用,体现了数学转化思想方法,属于中档题.14、【解题分析】

】由题意利用任意角的三角函数的定义,求得的值.【题目详解】∵的终边过点,若,.即答案为-2.【题目点拨】本题主要考查任意角的三角函数的定义和诱导公式,属基础题.15、2【解题分析】

变换得到,展开式的通项为,计算得到答案.【题目详解】,的展开式的通项为:.含项的系数为:.故答案为:.【题目点拨】本题考查了二项式定理的应用,意在考查学生的计算能力和应用能力.16、【解题分析】

先把复数进行化简,然后利用求模公式可得结果.【题目详解】.故答案为:.【题目点拨】本题主要考查复数模的求解,利用复数的运算把复数化为的形式是求解的关键,侧重考查数学运算的核心素养.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)见解析(Ⅱ)【解题分析】

(Ⅰ)首先求得导函数,然后结合导函数的解析式分类讨论函数的单调性即可;(Ⅱ)将原问题进行等价转化为,,恒成立,然后构造新函数,结合函数的性质确定实数的取值范围即可.【题目详解】解:(Ⅰ)当时,,当时,在上恒成立,函数在上单调递减;当时,由得:;由得:.∴当时,函数的单调递减区间是,无单调递增区间:当时,函数的单调递减区间是,函数的单调递增区间是.(Ⅱ)对任意的和,恒成立等价于:,,恒成立.即,,恒成立.令:,,,则得,由此可得:在区间上单调递减,在区间上单调递增,∴当时,,即又∵,∴实数的取值范围是:.【题目点拨】本题主要考查导函数研究函数的单调性和恒成立问题,考查分类讨论的数学思想,等价转化的数学思想等知识,属于中等题.18、(1)(2)证明见解析【解题分析】

(1)分类讨论,去绝对值求出函数的解析式,根据一次函数的性质,得出的单调性,得出取最小值,即可求的值;(2)由(1)得出,利用“乘1法”,令,化简后利用基本不等式求出的最小值,即可证出.【题目详解】(1)解:当时,单调递减;当时,单调递增.所以当时,取最小值.(2)证明:由(1)可知.要证明:,即证,因为,,为正实数,所以.当且仅当,即,,时取等号,所以.【题目点拨】本题考查绝对值不等式和基本不等式的应用,还运用“乘1法”和分类讨论思想,属于中档题.19、(1)(2)当n为偶数时,;当n为奇数时,.(3)【解题分析】

(1)根据,讨论与两种情况,即可求得数列的通项公式;(2)由(1)利用递推公式及累加法,即可求得当n为奇数或偶数时的通项公式.也可利用数学归纳法,先猜想出通项公式,再用数学归纳法证明.(3)分类讨论,当n为奇数或偶数时,分别求得的最大值,即可求得的取值范围.【题目详解】(1)由题意可知,.当时,,当时,也满足上式.所以.(2)解法一:由(1)可知,即.当时,,①当时,,所以,②当时,,③当时,,所以,④……当时,n为偶数当时,n为偶数所以以上个式子相加,得.又,所以当n为偶数时,.同理,当n为奇数时,,所以,当n为奇数时,.解法二:猜测:当n为奇数时,.猜测:当n为偶数时,.以下用数学归纳法证明:,命题成立;假设当时,命题成立;当n为奇数时,,当时,n为偶数,由得故,时,命题也成立.综上可知,当n为奇数时同理,当n为偶数时,命题仍成立.(3)由(2)可知.①当n为偶数时,,所以随n的增大而减小从而当n为偶数时,的最大值是.②当n为奇数时,,所以随n的增大而增大,且.综上,的最大值是1.因此,若对于任意的,不等式恒成立,只需,故实数的取值范围是.【题目点拨】本题考查了累加法求数列通项公式的应用,分类讨论奇偶项的通项公式及求和方法,数学归纳法证明数列的应用,数列的单调性及参数的取值范围,属于难题.20、(1)30;(2),比较划算.【解题分析】

(1)由频率和为1求出,根据的值求出保费的平均值,然后解一元一次不等式即可求出结果,最后取近似值即可;(2)分别计算参保与不参保时的期望,,比较大小即可.【题目详解】解:(1)由,解得.保险公司每年收取的保费为:∴要使公司不亏本,则,即解得∴.(2)①若该老人购买了此项保险,则的取值为∴(元).②若该老人没有购

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论