2024届江苏省昆山市、太仓市八上数学期末达标检测模拟试题含解析_第1页
2024届江苏省昆山市、太仓市八上数学期末达标检测模拟试题含解析_第2页
2024届江苏省昆山市、太仓市八上数学期末达标检测模拟试题含解析_第3页
2024届江苏省昆山市、太仓市八上数学期末达标检测模拟试题含解析_第4页
2024届江苏省昆山市、太仓市八上数学期末达标检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省昆山市、太仓市八上数学期末达标检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.已知直线y=kx+b的图象如图所示,则不等式kx+b>0的解集是()A.x>2 B.x>3 C.x<2 D.x<32.下列各式的计算中,正确的是()A.2+=2 B.4-3=1C.=x+y D.-=3.若等腰三角形的两边长分别为5和11,则这个等腰三角形的周长为()A.21 B.22或27 C.27 D.21或274.将一次函数y=﹣2x+3的图象沿y轴向上平移2个单位长度,则平移后的图象所对应的函数表达式为()A.y=﹣2x+1 B.y=﹣2x﹣5 C.y=﹣2x+5 D.y=﹣2x+75.如图,在△ABC中,AC=DC=DB,∠ACB=105°,则∠B的大小为()A.15° B.20° C.25° D.40°6.如图,AB=AC,∠A=36°,AB的垂直平分线MN交AB于点M,交AC于点D,下列结论:①△BCD是等腰三角形;②BD是∠ABC的平分线;③DC+BC=AB;④△AMD≌△BCD,正确的是()A.①② B.②③ C.①②③ D.①②④7.如图,在中,,平分,过点作于点.若,则()A. B. C. D.8.下列命题中,是假命题的是()A.如果一个等腰三角形有两边长分别是1,3,那么三角形的周长为7B.等腰三角形的高、角平分线和中线一定重合C.两个全等三角形的面积一定相等D.有两条边对应相等的两个直角三角形一定全等9.以下是有关环保的四个标志,从图形的整体看,是轴对称图形的是()A. B. C. D.10.用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.SAS B.AAS C.ASA D.SSS11.如图,已知在正方形网格中,每个小方格都是边长为1的正方形,A、B两点在格点上,位置如图,点C也在格点上,且△ABC为等腰三角形,则点C的个数为()A.7 B.8 C.9 D.1012.已知△ABC中,AB=8,BC=5,那么边AC的长可能是下列哪个数()A.15 B.12 C.3 D.2二、填空题(每题4分,共24分)13.计算10ab3÷5ab的结果是_____.14.如图,在△ABC中,∠A=60°,若剪去∠A得到四边形BCDE,则∠1+∠2=______.15.如果直角三角形的一个内角为40°,则这个直角三角形的另一个锐角为_____.16.某种病菌的形状为球形,直径约是,用科学记数法表示这个数为______.17.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β=_____.18.命题“若a2>b2则a>b”是_____命题(填“真”或“假”),它的逆命题是_____.三、解答题(共78分)19.(8分)如图,AB⊥BC,AD⊥DC,∠BAD=100°,在BC、CD上分别找一点M、N,当△AMN周长最小时,求∠MAN的度数是多少?20.(8分)若,求的值.21.(8分)如图,在平面直角坐标系中点A的坐标为(4,-3),且0A=5,在x轴上确定一点P,使△AOP是以OA为腰的等腰三角形.(1)写出一个符合题意的点P的坐标;(2)请在图中画出所有符合条件的△AOP.22.(10分)如图,在中,,,点在上,且,.(1)求证:;(2)求的长.23.(10分)已知:如图,∠B=∠D,∠1=∠2,AB=AD,求证:BC=DE.24.(10分)(1)(2)解方程组:25.(12分)如图,直线过点A(0,6),点D(8,0),直线:与轴交于点C,两直线,相交于点B.(1)求直线的解析式和点B的坐标;(2)连接AC,求的面积;(3)若在AD上有一点P,把线段AD分成2:3的两部分时,请直接写出点P的坐标(不必写解答过程).26.先化简,再求值:,其中x=1.

参考答案一、选择题(每题4分,共48分)1、C【分析】根据函数图象可得当y>0时,图象在x轴上方,然后再确定x的范围.【详解】直线y=kx+b中,当y>0时,图象在x轴上方,则不等式kx+b>0的解集为:x<2,故选:C.【点睛】此题主要考查了一次函数与一元一次不等式,关键是掌握数形结合思想,利用图象可直接确定答案.2、D【解析】根据二次根式的运算法则分别计算,再判断.【详解】A、2和不能合并,故本选项错误;

B、4-3=≠1,故本选项错误;

C、=x+y(x+y≥0),故本选项错误;

D、-2=,故本选项正确.

故选D.【点睛】本题考查了对二次根式的混合运算,同类二次根式,二次根式的性质,二次根式的加减法等知识点的理解和掌握,能根据这些性质进行计算是解题的关键.3、C【分析】分两种情况分析:当腰取5,则底边为11;当腰取11,则底边为5;根据三角形三边关系分析.【详解】当腰取5,则底边为11,但5+5<11,不符合三角形三边的关系,所以这种情况不存在;

当腰取11,则底边为5,则三角形的周长=11+11+5=1.

故选C.【点睛】考核知识点:等腰三角形定义.理解等腰三角形定义和三角形三边关系是关键.4、C【分析】直接利用一次函数平移规律“上加下减”即可得到答案.【详解】∵将一次函数y=﹣2x+3的图象沿y轴向上平移2个单位长度,∴平移后所得图象对应的函数关系式为:y=﹣2x+3+2,即y=﹣2x+1.故选:C.【点睛】本题主要一次函数平移规律,掌握一次函数平移规律“左加右减,上加下减”是解题的关键.5、C【分析】根据边相等的角相等,用∠B表示出∠CDA,然后就可以表示出∠ACB,求解方程即可.【详解】解:设∠B=x

∵AC=DC=DB

∴∠CAD=∠CDA=2x

∴∠ACB=180°-2x-x=105°

解得x=25°.

故选:C.【点睛】本题主要考查了三角形的内角和外角之间的关系以及等腰三角形的性质.(1)三角形的外角等于与它不相邻的两个内角和.(2)三角形的内角和是180°.求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件.6、C【分析】由等腰三角形的性质和垂直平分线的性质,结合三角形的内角和定理,以及全等三角形的判定,分别进行判断,即可得到答案.【详解】解:∵AB=AC,∠A=36°,∴∠ABC=∠C=,∵MN垂直平分AB,∴AD=BD,AM=BM,∴∠ABD=∠A=36°,∴∠DBC=36°,∠BDC=72°,∴BD=BC,∴△BCD是等腰三角形,①正确;∵∠ABD=∠DBC=36°,∴BD平分∠ABC,②正确;∵BC=BD=AD,AB=AC,∴DC+BC=DC+AD=AC=AB;③正确;△AMD与△BCD不能证明全等,④错误;故正确的结论有:①②③;故选:C.【点睛】本题考查了等腰三角形的性质,垂直平分线的性质,三角形的内角和定理,全等三角形的判定,解题的关键是熟练掌握所学的性质进行解题.7、C【分析】先根据角平分线的性质,得出DE=DC,再根据DC=1,即可得到DE=1.【详解】解:∵∠C=90°,AD平分∠BAC,DE⊥AB于E,

∴DE=DC,

∵DC=1,

∴DE=1,

故选:C.【点睛】本题主要考查了角平分线的性质的运用,解题时注意:角的平分线上的点到角的两边的距离相等.8、B【分析】根据等腰三角形及等边三角形的性质即可一一判断.【详解】A、正确.一个等腰三角形有两边长分别是1,3,那么三角形的边长为1,3,3周长为7;B、等腰三角形底边上的高,中线和顶角的平分线重合,故本项错误;C、正确.两个全等三角形的面积一定相等;D、正确.有两条边对应相等的两个直角三角形一定全等;故选B.9、B【解析】根据轴对称图形的定义求解即可得答案.【详解】A,此图案不是轴对称图形,故该选项不符合题意;B、此图案是轴对称图形,故该选项符合题意;C、此图案不是轴对称图形,故该选项不符合题意;D、此图案不是轴对称图形,故该选项不符合题意;故选B.【点睛】本题主要考查轴对称图形,掌握其定义是解题的关键:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.10、D【分析】根据三角形全等的判定与性质即可得出答案.【详解】解:根据作法可知:OC=O′C′,OD=O′D′,DC=D′C′∴△OCD≌△O′C′D′(SSS)∴∠COD=∠C′O′D′∴∠AOB=∠A′O′B′故选D.【点睛】本题考查的是三角形全等,属于基础题型,需要熟练掌握三角形全等的判定与性质.11、C【分析】根据已知条件,可知按照点C所在的直线分两种情况:①点C以点A为标准,AB为底边;②点C以点B为标准,AB为等腰三角形的一条边.【详解】解:如图①点C以点A为标准,AB为底边,符合点C的有5个;

②点C以点B为标准,AB为等腰三角形的一条边,符合点C的有4个.

所以符合条件的点C共有9个.

故选:C.【点睛】此题考查了等腰三角形的判定来解决特殊的实际问题,其关键是根据题意,结合图形,再利用数学知识来求解.注意数形结合的解题思想.12、B【解析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边列出不等式即可.【详解】解:根据三角形的三边关系,8−5<AC<8+5,即3<AC<13,符合条件的只有12,故选:B.【点睛】本题考查的是三角形的三边关系,掌握三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边是解题的关键.二、填空题(每题4分,共24分)13、1b1.【解析】10ab3÷5ab=10÷5·(a÷a)·(b3÷b)=1b1,故答案为1b1.14、240.【详解】试题分析:∠1+∠2=180°+60°=240°.考点:1.三角形的外角性质;2.三角形内角和定理.15、50°【分析】根据直角三角形两锐角互余进行求解即可.【详解】∵直角三角形的一个内角为40°,∴这个直角三角形的另一个锐角=90°﹣40°=50°,故答案为50°.【点睛】本题考查了直角三角形两锐角互余的性质,熟练掌握是解题的关键.16、【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】0.000000102的小数点向右移动7位得到1.02,所以0.000000102用科学记数法表示为,故答案为.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.17、240°【解析】已知等边三角形的顶角为60°,根据三角形的内角和定理可得两底角和=180°-60°=120°;再由四边形的内角和为360°可得∠α+∠β=360°-120°=240°.故答案是:240°.18、假若a>b则a1>b1【分析】a1大于b1则a不一定大于b,所以该命题是假命题,它的逆命题是“若a>b则a1>b1”.【详解】①当a=-1,b=1时,满足a1>b1,但不满足a>b,所以是假命题;②命题“若a1>b1则a>b”的逆命题是若“a>b则a1>b1”;故答案为:假;若a>b则a1>b1.【点睛】本题主要考查判断命题真假、逆命题的概念以及平方的计算,熟记相关概念取特殊值代入是解题关键.三、解答题(共78分)19、20°.【分析】根据要使△AMN的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出A关于BC和CD的对称点A′,A″,即可得出∠AA′M+∠A″=180°﹣∠BAD=80°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″),再求∠MAN的度数即可得出答案.【详解】如图,作A关于BC和CD的对称点A',A″,连接A'A″,交BC于M,交CD于N,则A'A″即为△AMN的周长最小值.∵∠DAB=100°,∴∠AA'M+∠A″=180°﹣∠BAD=180°﹣100°=80°.∵∠MA'A=∠MAA',∠NAD=∠A″,且∠MA'A+∠MAA'=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠MA'A+∠MAA'+∠NAD+∠A″=2(∠AA'M+∠A″)=2×80°=160°,∴∠MAN=180°﹣160°=20°.故当△AMN周长最小时,∠MAN的度数是20°.【点睛】本题考查的是轴对称-最短路线问题,涉及到平面内最短路线问题求法以及三角形的外角的性质和垂直平分线的性质等知识,根据已知得出M,N的位置是解题关键.20、.【分析】根据等式的基本性质将已知等式变形,然后利用整体代入法和分式的基本性质约分即可求出分式的值.【详解】解:∵∴a+b=5ab,∴====.【点睛】此题考查的是求分式的值,掌握等式的基本性质和分式的基本性质是解决此题的关键.21、(1)点P的坐标为或或,写出其中一个即可;(2)见解析【分析】(1)以点O为圆心,OA为半径画圆,与x轴的交点P1、P2即为所求;以点A为圆心,OA为半径画圆,与x轴的交点P3即为所求;(2)连接AP1、AP2、AP3、OP1、OP2、OP3即可.【详解】(1)如图,点P的坐标为或或.(2)如图所示,即为所求.【点睛】本题考查了尺规作图的问题,掌握等腰三角形的性质以及尺规作图的方法是解题的关键.22、(1)详见解析;(2).【分析】(1)在△BDC中,利用勾股定理的逆定理判定该三角形是直角三角形,且∠CDB=90°(2)在直角△ACD中,由勾股定理求得AC的值【详解】(1)证明:在中,,,,..是直角三角形,且,.(2)解:由(1)知,.,,.在中,,.的长为.【点睛】本题考查了勾股定理的逆定理和勾股定理,通过审题把题目中的条件进行转化,是解题的关键.23、见解析【分析】先利用ASA证明△ABC≌△ADE,再根据全等三角形的性质即得结论.【详解】证明:∵∠1=∠2,∴∠DAC+∠1=∠2+∠DAC∴∠BAC=∠DAE,在△ABC和△ADE中,,∴△ABC≌△ADE(ASA),∴BC=DE.【点睛】本题考查了全等三角形的判定和性质,属于基础题型,熟练掌握全等三角形的判定和性质是解答的关键.24、(1);(2)【分析】(1)先化简二次根式,再进行加减运算即可;(2)利用加减消元法解方程组即可.【详解】(1)原式=(2)①×2+②×3得,解得将代入①中,得所以方程组的解为【点睛】本题主要考查二次根式的加减运算及解二元一次方程组,掌握二次根式的化简和加减消元法是解题的关键.25、(1)直线的解析式为,;(2)15;(3)点P的坐标为或.【分析】(1)先利用待定系数法可求出直线的解析式,再联立直线,的解析式可得点B的坐标;(2)先根据直线的解析式求出点C的坐标,再根据点的坐标分别求出的长以及点B到x轴的距离,然后根据的面积等于的面积减去的面积即可得;(3)设点P的坐标为,先利用两点之间的距离公式求出AD的长,再根据题意可得或,然后利用两点之间的距离公

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论