2024届湖北省恩施市龙凤镇民族初级中学八上数学期末监测模拟试题含解析_第1页
2024届湖北省恩施市龙凤镇民族初级中学八上数学期末监测模拟试题含解析_第2页
2024届湖北省恩施市龙凤镇民族初级中学八上数学期末监测模拟试题含解析_第3页
2024届湖北省恩施市龙凤镇民族初级中学八上数学期末监测模拟试题含解析_第4页
2024届湖北省恩施市龙凤镇民族初级中学八上数学期末监测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖北省恩施市龙凤镇民族初级中学八上数学期末监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,已知,点,,,…在射线上,点,,,…在射线上,,,,…均为等边三角形,若,则的边长为()A.8 B.16 C.24 D.322.如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论:①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若=,则3S△EDH=13S△DHC,其中结论正确的有()A.1个 B.2个 C.3个 D.4个3.一个三角形的三边长分别为,则这个三角形的形状为()A.钝角三角形 B.直角三角形 C.锐角三角形 D.形状不能确定4.甲、乙两班举行班际电脑汉字输入比赛,各选10名选手参赛,各班参赛学生每分钟输入汉字个数统计如下表:输入汉字个数(个)132133134135136137甲班人数(人)102412乙班人数(人)014122通过计算可知两组数据的方差分别为s甲2=2.0,s乙2=2.7,则下列说法:①甲组学生比乙组学生的成绩稳定;②两组学生成绩的中位数相同;③两组学生成绩的众数相同,其中正确的有()A.0个 B.1个 C.2个 D.3个5.把分式方程化为整式方程正确的是()A. B.C. D.6.如图,四个一次函数,,,的图象如图所示,则,,,的大小关系是()A. B. C. D.7.某地连续天高温,其中日最高气温与天数之间的关系如图所示,则这天日最高气温的平均值是()A. B. C. D.8.若等腰中有一个内角为,则这个等腰三角形的一个底角的度数为()A. B. C.或 D.或9.下列命题中,是真命题的是()A.同位角相等B.全等的两个三角形一定是轴对称C.不相等的角不是内错角D.同旁内角互补,两直线平行10.等腰三角形的一个外角为80°,则它的底角为()A.100° B.80° C.40° D.100°或40°二、填空题(每小题3分,共24分)11.如图,在△ABC中,AD是中线,则△ABD的面积△ACD的面积(填“>”“<”“=”).12.如图,在△ABC中,∠ACB=90°,AC=15,BC=9,点P是线段AC上的一个动点,连接BP,将线段BP绕点P逆时针旋转90°得到线段PD,连接AD,则线段AD的最小值是______.13.已知=3,则=_____.14.估算:____.(结果精确到)15.已知函数与的图像的一个交点坐标是(1,2),则它们的图像的另一个交点的坐标是____.16.关于的分式方程的解为负数,则的取值范围是_________.17.如图,将一张矩形纸片ABCD沿EF折叠后,点C落在AB边上的点G处,点D落在点H处.若∠1=62°,则图中∠BEG的度数为_____.18.如图,直线与轴,轴分别交于点,点,是上的一点,若将沿折叠,使点恰好落在轴上的点处,则直线的表达式是_________.三、解答题(共66分)19.(10分)如图,已知在和中,交于点,求证:;当时,求的度数.20.(6分)如图,在中,是边上的高,是的角平分线,.(1)求的度数;(2)若,求的长.21.(6分)列方程解应用题:一辆汽车开往距离出发地180km的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前40分钟到达目的地.求前一小时的行驶速度.22.(8分)如图(1),,,垂足为A,B,,点在线段上以每秒2的速度由点向点运动,同时点在线段上由点向点运动.它们运动的时间为().(1),;(用的代数式表示)(2)如点的运动速度与点的运动速度相等,当时,与是否全等,并判断此时线段和线段的位置关系,请分别说明理由;(3)如图(2),将图(1)中的“,”,改为“”,其他条件不变.设点的运动速度为,是否存在有理数,与是否全等?若存在,求出相应的x、t的值;若不存在,请说明理由.23.(8分)先化简,再求值(1),其中;(2),其中,.24.(8分)小明遇到这样一个问题如图1,△ABC中,∠ACB=90°,点D在AB上,且BD=BC,求证:∠ABC=2∠ACD.小明发现,除了直接用角度计算的方法外,还可以用下面两种方法:方法2:如图2,作BE⊥CD,垂足为点E.方法3:如图3,作CF⊥AB,垂足为点F.根据阅读材料,从三种方法中任选一种方法,证明∠ABC=2∠ACD.25.(10分)解下列分式方程:(1)(2).26.(10分)如图,AB=AC,AB⊥AC,AD⊥AE,且∠ABD=∠ACE.求证:BD=CE.

参考答案一、选择题(每小题3分,共30分)1、D【分析】先根据等边三角形的各边相等且各角为60°得:∠B1A1A2=60°,A1B1=A1A2,再利用外角定理求∠OB1A1=30°,则∠MON=∠OB1A1,由等角对等边得:B1A1=OA1=2,得出△A1B1A2的边长为2,再依次同理得出:△A2B2A3的边长为4,△A4B4A5的边长为:24=16,则△A5B5A6的边长为:25=1.【详解】解:∵△A1B1A2为等边三角形,

∴∠B1A1A2=60°,A1B1=A1A2,

∵∠MON=30°,

∴∠OB1A1=60°-30°=30°,

∴∠MON=∠OB1A1,

∴B1A1=OA1=2,

∴△A1B1A2的边长为2,

同理得:∠OB2A2=30°,

∴OA2=A2B2=OA1+A1A2=2+2=4,

∴△A2B2A3的边长为4,

同理可得:△A3B3A4的边长为:23=8,

△A4B4A5的边长为:24=16,

则△A5B5A6的边长为:25=1,

故选:D.【点睛】本题考查了等边三角形的性质和外角定理,难度不大,需要运用类比的思想,依次求出各等边三角形的边长,并总结规律,才能得出结论.2、D【分析】根据题意可知∠ACD=45°,则GF=FC,继而可得EG=DF,由此可判断①;由SAS证明△EHF≌△DHC,得到∠HEF=∠HDC,继而有∠AEH+∠ADH=180°,由此可判断②;同②证明△EHF≌△DHC,可判断③;若AE:AB=2:3,则AE=2BE,可以证明△EGH≌△DFH,则∠EHG=∠DHF且EH=DH,则∠DHE=90°,△EHD为等腰直角三角形,过点H作HM⊥CD于点M,设HM=x,则DM=5x,DH=,CD=6x,根据三角形面积公式即可判断④.【详解】①∵四边形ABCD为正方形,EF∥AD,∴EF=AD=CD,∠ACD=45°,∠GFC=90°,∴△CFG为等腰直角三角形,∴GF=FC,∵EG=EF-GF,DF=CD-FC,∴EG=DF,故①正确;②∵△CFG为等腰直角三角形,H为CG的中点,∴FH=CH,∠GFH=∠GFC=45°=∠HCD,在△EHF和△DHC中,,∴△EHF≌△DHC(SAS),∴∠HEF=∠HDC,∴∠AEH+∠ADH=∠AEF+∠HEF+∠ADF-∠HDC=∠AEF+∠ADF=180°,故②正确;③∵△CFG为等腰直角三角形,H为CG的中点,∴FH=CH,∠GFH=∠GFC=45°=∠HCD,在△EHF和△DHC中,,∴△EHF≌△DHC(SAS),故③正确;④∵AE:AB=2:3,∴AE=2BE,∵△CFG为等腰直角三角形,H为CG的中点,∴FH=GH,∠FHG=90°,∵∠EGH=∠FHG+∠HFG=90°+∠HFG=∠HFD,在△EGH和△DFH中,,∴△EGH≌△DFH(SAS),∴∠EHG=∠DHF,EH=DH,∠DHE=∠EHG+∠DHG=∠DHF+∠DHG=∠FHG=90°,∴△EHD为等腰直角三角形,过H点作HM垂直于CD于M点,如图所示:设HM=x,则DM=5x,DH==,CD=6x,则S△DHC=×CD×HM=3x2,S△EDH=×DH2=13x2,∴3S△EDH=13S△DHC,故④正确,所以正确的有4个,故选D.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理、三角形面积的计算等知识;熟练掌握正方形的性质,证明三角形全等是解决问题的关键.3、B【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.【详解】解:∵,,∴∴∴这个三角形一定是直角三角形,

故选:B.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.4、B【分析】根据中位数,众数的计算方法,分别求出,就可以分别判断各个命题的真假.【详解】解:①甲组学生比乙组学生的成绩方差小,∴甲组学生比乙组学生的成绩稳定.②甲班学生的成绩按从小到大排列:132、134、134、135、135、135、135、136、137、137,可见其中位数是135;乙班学生的成绩按从小到大排列:133、134、134、134、134、135、136、136、137、137,可见其中位数是134.5,所以两组学生成绩的中位数不相同;③甲班学生成绩的众数是135,乙班学生成绩的众数是134,所以两组学生成绩的众数不相同.故选B.【点睛】此题考查方差问题,对于中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可.方差是反映数据波动大小的量.5、C【解析】方程两边同乘最简公分母x(x+1),得:2(x+1)-x2=x(x+1),故选C.6、B【分析】根据一次函数和正比例函数的图象与性质可得.【详解】解:∵,经过第一、三象限,且更靠近y轴,∴,由∵,从左往右呈下降趋势,∴,又∵更靠近y轴,∴,∴故答案为:B.【点睛】本题考查了一次函数及正比例函数的图象与性质,解题的关键是熟记一次函数及正比例函数的图象与性质.7、B【分析】先分别求出32℃、33℃、34℃、36℃和35℃的天数,然后根据平均数的公式计算即可.【详解】解:∵10×10%=1(天),10×20%=2(天),10×30%=3(天),∴最高气温是32℃的天数有1天,最高气温是33℃、34℃和36℃的天数各有2天,最高气温是35℃的天数有3天,∴这天日最高气温的平均值是(32×1+33×2+34×2+36×2+35×3)÷10=故选B.【点睛】此题考查的是求平均数,掌握平均数的公式是解决此题的关键.8、D【分析】由于不明确40°的角是等腰三角形的底角还是顶角,故应分40°的角是顶角和底角两种情况讨论.【详解】当40°的角为等腰三角形的顶角时,底角的度数==70°;当40°的角为等腰三角形的底角时,其底角为40°,故它的底角的度数是70°或40°.故选:D.【点睛】此题主要考查学生对等腰三角形的性质这一知识点的理解和掌握,由于不明确40°的角是等腰三角形的底角还是顶角,所以要采用分类讨论的思想.9、D【分析】根据平行线的性质对A进行判断;根据轴对称的定义对B进行判断;根据内错角的定义对C进行判断;根据平行线的判定对D进行判断.【详解】解:A、两直线平行,同位角相等,所以A选项为假命题;B、全等的两个三角形不一定是轴对称的,所以B选项为假命题;C、不相等的角可能为内错角,所以C选项为假命题;D、同旁内角互补,两直线平行,所以D选项为真命题.故选D.考点:命题与定理.10、C【解析】试题分析:根据三角形的外角性质和等腰三角形的性质求解.解:∵等腰三角形的一个外角为80°∴相邻角为180°﹣80°=100°∵三角形的底角不能为钝角∴100°角为顶角∴底角为:(180°﹣100°)÷2=40°.故选C.考点:等腰三角形的性质.二、填空题(每小题3分,共24分)11、=【解析】根据三角形的面积公式以及三角形的中线的概念,知:三角形的中线可以把三角形的面积分成相等的两部分.解:根据等底同高可得△ABD的面积=△ACD的面积.注意:三角形的中线可以把三角形的面积分成相等的两部分.此结论是在图形中找面积相等的三角形的常用方法.12、3【分析】如图,过点D作DE⊥AC于E,有旋转的性质可得DP=BP,∠DPB=90°,由“AAS”可证△DEP≌△PCB,可得DE=CP,EP=BC=9,可求AE+DE=6,由勾股定理和二次函数的性质可求解.【详解】如图,过点D作DE⊥AC于E,∵将线段BP绕点P逆时针旋转90°得到线段PD,∴DP=BP,∠DPB=90°,∴∠DPE+∠BPC=90°,且∠BPC+∠PBC=90°,∴∠DPE=∠PBC,且DP=BP,∠DEP=∠C=90°,∴△DEP≌△PCB(AAS)∴DE=CP,EP=BC=9,∵AE+PC=AC-EP=6∴AE+DE=6,∵AD2=AE2+DE2,∴AD2=AE2+(6-AE)2,∴AD2=2(AE-3)2+18,当AE=3时,AD有最小值为3,故答案为3.【点睛】本题考查了旋转的性质,全等三角形的判定和性质,勾股定理,利用二次函数的性质求最小值是本题的关键.13、【分析】首先将已知变形进而得出x+y=3xy,再代入原式求出答案.【详解】∵=3,∴,∴x+y=3xy∴=故答案为:.【点睛】此题主要考查了分式的值,正确将已知变形进而化简是解题关键.14、6。【解析】根据实数的性质即可求解.【详解】∵36∴故答案为6【点睛】此题主要考查实数的估算,解题的关键是熟知实数的性质.15、(-1,-2)【分析】反比例函数的图象是中心对称图形,则与经过原点的直线的两个交点一定关于原点对称.【详解】∵函数与的图像都是中心对称图形,∴函数与的图像的一个交点坐标是(1,2)关于原点对称的点是(-1,-2),∴它们的图像的另一个交点的坐标是(-1,-2).故答案是:(-1,-2).【点睛】本题主要考查了反比例函数图象的中心对称性.关于原点对称的两个点的横、纵坐标分别互为相反数.16、【解析】分式方程去分母转化为整式方程,由分式方程的解为负数,求出a的范围即可【详解】分式方程去分母得:2x+a=x+1解得:x=1-a,由分式方程解为负数,得到1-a<0,且1-a≠-1解得:a>1且a≠2,故答案为:a>1且a≠2【点睛】此题考查分式方程的解,解题关键在于求出x的值再进行分析17、56°【解析】根据矩形的性质可得AD//BC,继而可得∠FEC=∠1=62°,由折叠的性质可得∠GEF=∠FEC=62°,再根据平角的定义进行求解即可得.【详解】∵四边形ABCD是矩形,∴AD//BC,∴∠FEC=∠1=62°,∵将一张矩形纸片ABCD沿EF折叠后,点C落在AB边上的点G处,∴∠GEF=∠FEC=62°,∴∠BEG=180°-∠GEF-∠FEC=56°,故答案为56°.【点睛】本题考查了矩形的性质、折叠的性质,熟练掌握矩形的性质、折叠的性质是解题的关键.18、y=x+3.【分析】由直线即可得到A(-6,0),B(0,8),再根据勾股定理即可得到P(0,3),利用待定系数法即可得到直线AP的表达式.【详解】令,则,令,则,由直线与轴,轴交点坐标为:A(-6,0),B(0,8),∴AO=6,BO=8,

∴,

由折叠可得AB'=AB=10,B'P=BP,

∴OB'=AB'-AO,

设P(0,),则OP=y,B'P=BP=,

∵Rt△POB'中,PO2+B'O2=B'P2,

∴y2+42=()2,

解得:,

∴P(0,3),

设直线AP的表达式为,则,,∴直线AP的表达式是.故答案为:.【点睛】本题是一次函数与几何的综合题,考查了待定系数法求解析式及折叠问题.解题时,常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.三、解答题(共66分)19、(1)证明见解析;(2)∠BOC=70°.【分析】(1)求出∠BAE=∠CAF,根据SAS推出△BAE≌△CAF,推出BE=CF即可;(2)求出∠EBA+∠BDA=110°,求出∠ACF+∠CDO=110°,即可得出答案;【详解】(1)∵∠CAB=∠EAF,∴∠CAB+∠CAE=∠EAF+∠CAE,∴∠BAE=∠CAF,在△BAE和△CAF中,,∴△BAE≌△CAF(SAS),∴BE=CF;(2)∵△BAE≌△CAF,∴∠EBA=∠FCA,∵∠CAB=70°,∴∠EBA+∠BDA=180°-70°=110°,∵∠BDA=∠CDE,∠EBA=∠FCA,∴∠ACF+∠CDE=110°,∴∠BOC=180°-(∠ACF+∠CDE)=180°-110°=70°.【点睛】本题考查了全等三角形的判定与性质,三角形内角和定理的应用,准确识图,熟练掌握和灵活运用相关知识是解题的关键.20、(1)10°;(1)1.【分析】(1)由题知∠ABE=∠BAE=40°,根据三角形的一个外角等于与它不相邻的两个内角和求得∠AEC=80°,因为是边上的高,即可求解.(1)是的角平分线,结合题(1)得出∠DAC=30°,即可求解.【详解】解:(1)∵∴∴∵是边上得高,∴∴(1)∵是的角平分线,∴∴∵∴【点睛】本题考查了三角形外角的性质以及角平分线的性质,掌握这两个知识点是解题的关键.21、1千米/小时.【分析】设汽车的速度为x千米/小时,依题意可列出分式方程进行求解.【详解】设汽车的速度为x千米/小时,依题意可得:,x=1.所以,汽车的速度为1千米/小时.【点睛】此题主要考查分式方程的应用,解题的关键是根据题意列出方程.22、(1)2t,8-2t;(2)△ADP与△BPQ全等,线段PD与线段PQ垂直,理由见解析;(3)存在或,使得△ADP与△BPQ全等.【分析】(1)根据题意直接可得答案.(2)由t=1可得△ACP和△BPQ中各边的长,由SAS推出△ACP≌△BPQ,进而根据全等三角形性质得∠APC+∠BPQ=90°,据此判断线段PC和PQ的位置关系;(3)假设△ACP≌△BPQ,用t和x表示出边长,根据对应边相等解出t和x的值;再假设△ACP≌△BQP,用上步的方法求解,注意此时的对应边和上步不一样.【详解】(1)由题意得:2t,8-2t.(2)△ADP与△BPQ全等,线段PD与线段PQ垂直.理由如下:当t=1时,AP=BQ=2,BP=AD=6,又∠A=∠B=90°,在△ADP和△BPQ中,,∴△ADP△BPQ(SAS),∴∠ADP=∠BPQ,∴∠APD+∠BPQ=∠APD+∠ADP=90°,∴∠DPQ=90°,即线段PD与线段PQ垂直.(3)①若△ADP△BPQ,则AD=BP,,AP=BQ,则,解得;②若△ADP△BQP,则AD=BQ,AP=BP,则,解得:;综上所述:存在或,使得△ADP与△BPQ全等.【点睛】本题考查全等三角形的判定与性质,解题关键是熟练掌握全等三角形的性质和判定定理.23、(1)x2-8,-6;(2)a-b,-1【分析】(1)先根据整式的运算法则把所给代数式化简,然后把代入计算;(2)先根据分式的运算法则把所给代数式化简,然后把,代入计算;【详解】(1)=x2-2x+1+x2-9-x2+2x=x2-8,当时,原式=2-8=-6;(2)原式===a-b,当,时,原式=1-2=-1.【点睛】本题考查了整式的化简求值,以及分式的化简求值,熟练掌握混合运算的运算法则是解答本题的关键.24、见解析【分析】方法1,利用等腰三角形的性质以及三角形内角和定理,即可得到∠ABC=2∠ACD.方法2,作BE⊥CD,垂足为点E.利用等腰三角形的性质以及同角的余角相

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论