2024届福建省福州教育学院附属中学八年级数学第一学期期末调研模拟试题含解析_第1页
2024届福建省福州教育学院附属中学八年级数学第一学期期末调研模拟试题含解析_第2页
2024届福建省福州教育学院附属中学八年级数学第一学期期末调研模拟试题含解析_第3页
2024届福建省福州教育学院附属中学八年级数学第一学期期末调研模拟试题含解析_第4页
2024届福建省福州教育学院附属中学八年级数学第一学期期末调研模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届福建省福州教育学院附属中学八年级数学第一学期期末调研模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.下列各组图形中,是全等形的是()A.两个含60°角的直角三角形B.腰对应相等的两个等腰直角三角形C.边长为3和4的两个等腰三角形D.一个钝角相等的两个等腰三角形2.在长为10cm,7cm,5cm,3cm的四根木条,选其中三根组成三角形,则能组成三角形的个数为()A.1 B.2 C.3 D.43.已知点M(1,a)和点N(2,b)是一次函数y=-2x+1图象上的两点,则a与b的大小关系是()A.a>b B.a=b C.a<b D.以上都不对4.已知的三边长为满足条件,则的形状为()A.等腰三角形 B.等腰直角三角形C.等边三角形 D.等腰三角形或直角三角形5.若x2﹣kxy+9y2是一个完全平方式,则k的值为()A.3 B.±6 C.6 D.+36.已知△ABC的周长是24,且AB=AC,又AD⊥BC,D为垂足,若△ABD的周长是20,则AD的长为()A.6 B.8 C.10 D.127.下列函数中,自变量的取值范围选取错误的是A.y=2x2中,x取全体实数B.y=中,x取x≠-1的实数C.y=中,x取x≥2的实数D.y=中,x取x≥-3的实数8.已知一次函数的图象上两点,,当时,有,那么的取值范围是()A. B. C. D.9.下列各数中,是无理数的是()A.3.14 B. C.0.57 D.10.如图,菱形的对角线长分别为,则这个菱形面积为()A. B. C. D.二、填空题(每小题3分,共24分)11.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=________.12.要使在实数范围内有意义,x应满足的条件是_____.13.已知为实数,且,则______.14.若方程是一元一次方程,则a的值为__________.15.如图,在Rt△ABC中,∠ABC=90°,AB=BC=8,若点M在BC上,且BM=2,点N是AC上一动点,则BN+MN的最小值为___________.16.若菱形的两条对角线长分别是6㎝和8㎝,则该菱形的面积是㎝1.17.为从甲乙两名射击运动员中选出一人参加竞标赛,特统计了他们最近10次射击训练的成绩,其中,他们射击的平均成绩为8.9环,方差分别是,从稳定性的角度看,_________的成绩更稳定.(填“甲”或“乙”)18.如图,在等边中,是的中点,是的中点,是上任意一点.如果,,那么的最小值是.三、解答题(共66分)19.(10分)问题背景:如图1,在四边形ABCD中,∠ABC=90°,AB=CB=DB,DB⊥AC.①直接写出∠ADC的大小;②求证:AB1+BC1=AC1.迁移应用:如图1,在四边形ABCD中,∠BAD=60°,AB=BC=CD=DA=1,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE、CF.①求证:△CEF是等边三角形;②若∠BAF=45°,求BF的长.20.(6分)(1)计算:(1+)2﹣×;(2)解方程组:.21.(6分)先化简,再求值:,其中x=1.22.(8分)如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.(1)求证:BD=EC;(2)若∠E=50°,求∠BAO的大小.23.(8分)如图,小巷左石两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC为0.7米,梯子顶端到地面的距离AC为2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离A′D为1.5米,求小巷有多宽.24.(8分)因式分解:(1)a3﹣4a(2)m3n﹣2m2n+mn25.(10分)数轴上点A表示2,点A关于原点的对称点为B,设点B所表示的数为x,(1)求x的值;(2)求(x-2)26.(10分)一辆汽车开往距离出发地200km的目的地,出发后第1小时内按原计划的速度匀速行驶,1小时后以原来速度的1.5倍匀速行驶,并比原计划提前30分钟到达目的地,求前1小时的行驶速度.

参考答案一、选择题(每小题3分,共30分)1、B【解析】试题解析:A、两个含60°角的直角三角形,缺少对应边相等,所以不是全等形;B、腰对应相等的两个等腰直角三角形,符合AAS或ASA,或SAS,是全等形;C、边长为3和4的两个等腰三角形有可能是3,3,4或4,4,3不一定全等对应关系不明确不一定全等;D、一个钝角相等的两个等腰三角形.缺少对应边相等,不是全等形.故选B.【点睛】本题主要考查了三角形全等的判定方法;需注意:判定两个三角形全等时,必须有边的参与,还要找准对应关系.2、B【分析】根据任意两边之和大于第三边判断能否构成三角形.【详解】依题意,有以下四种可能:(1)选其中10cm,7cm,5cm三条线段符合三角形的成形条件,能组成三角形(2)选其中10cm,7cm,3cm三条线段不符合三角形的成形条件,不能组成三角形(3)选其中10cm,5cm,3cm三条线段不符合三角形的成形条件,不能组成三角形(4)选其中7cm,5cm,3cm三条线段符合三角形的成形条件,能组成三角形综上,能组成三角形的个数为2个故选:B.【点睛】本题考查了三角形的三边关系定理,熟记三边关系定理是解题关键.3、A【详解】∵k=﹣2<0,∴y随x的增大而减小,∵1<2,∴a>b.故选A.4、D【分析】把所给的等式能进行因式分解的要因式分解,整理为非负数相加得0的形式,求出三角形三边的关系,进而判断三角形的形状.【详解】由,得因为已知的三边长为所以所以=0,或,即,或所以的形状为等腰三角形或直角三角形故选:D【点睛】本题考查了分组分解法分解因式,利用因式分解最后整理成多项式的乘积等于0的形式是解题的关键.5、B【解析】∵x2−kxy+9y2是完全平方式,∴−kxy=±2×3y⋅x,解得k=±6.故选B.6、B【分析】根据三线合一推出BD=DC,再根据两个三角形的周长进而得出AD的长.【详解】解:∵AB=AC,且AD⊥BC,∴BD=DC=BC,∵AB+BC+AC=2AB+2BD=24,∴AB+BD=12,∴AB+BD+AD=12+AD=20,解得AD=1.故选:B.【点睛】本题考查了等腰三角形的性质,做题时应该将已知和所求联系起来,对已知进行灵活运用,从而推出所求.7、D【分析】本题考查了当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数为非负数.二次根是有意义的条件是被开方数是非负数,根据这一条件就可以求出x的范围.解:A、函数是y=2x2,x的取值范围是全体实数,正确;B、根据分式的意义,x+1≠0,解得:x≠-1,正确;C、由二次根式的意义,得:x-2≥0,解得:x≥2,正确;D、根据二次根式和分式的意义,得:x+3>0,解得:x>-3,错误;故选D.【详解】8、D【分析】先根据时,有判断y随x的增大而减小,所以x的比例系数小于0,那么m-1<0,解出即可.【详解】解:∵当时,有∴y随x的增大而减小∴m-1<0∴m<1故选D.【点睛】此题主要考查了一次函数的图像性质,熟记k>0,y随x的增大而增大;k<0,y随x的增大而减小.9、D【解析】根据无理数的定义,分别判断,即可得到答案.【详解】解:是无理数;3.14,,0.57是有理数;故选:D.【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.10、A【解析】直接根据菱形的面积等于它的两条对角线的乘积的一半求出答案即可.【详解】∵AC=5cm,BD=8cm,∴菱形的面积=×5×8=10cm1.故选:A.【点睛】本题考查了菱形的性质,熟知菱形ABCD的面积等于对角线乘积的一半是解题的关键.二、填空题(每小题3分,共24分)11、11【分析】根据全等三角形的性质求出x和y即可.【详解】解:∵这两个三角形全等∴x=6,y=5∴x+y=11故答案为11.【点睛】此题考查的是全等三角形的性质,掌握全等三角形的对应边相等是解决此题的关键.12、x≥1【分析】根据被开方数大于等于0列式求解即可.【详解】要使在实数范围内有意义,x应满足的条件x﹣1≥0,即x≥1.故答案为:x≥1【点睛】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.13、或.【解析】根据二次根式有意义的条件可求出x、y的值,代入即可得出结论.【详解】∵且,∴,∴,∴或.故答案为:或.【点睛】本题考查了二次根式有意义的条件.解答本题的关键由二次根式有意义的条件求出x、y的值.14、1【分析】根据一元一次方程的最高次数是1,求出a的值.【详解】解:,.故答案是:1.【点睛】本题考查一元一次方程的定义,解题的关键是掌握一元一次方程的定义.15、10【分析】过点B作BO⊥AC于O,延长BO到B',使OB'=OB,连接MB',交AC于N,此时MB'=MN+NB'=MN+BN的值最小【详解】解:连接CB',∵BO⊥AC,AB=BC,∠ABC=90°,∴∠CBO=×90°=45°,∵BO=OB',BO⊥AC,∴CB'=CB,∴∠CB'B=∠OBC=45°,∴∠B'CB=90°,∴CB'⊥BC,根据勾股定理可得MB′=1O,MB'的长度就是BN+MN的最小值.故答案为:10【点睛】本题考查轴对称-最短路线问题;勾股定理.确定动点E何位置时,使BN+MN的值最小是关键.16、14【解析】已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积.解:根据对角线的长可以求得菱形的面积,根据S=ab=×6×8=14cm1,故答案为14.17、甲.【分析】方差越小,数据的密集度越高,波动幅度越小.【详解】解:已知S甲2=0.8,S乙2=1.3,可得S甲2<S乙2,所以成绩最稳定的运动员是甲.故答案为:甲.【点睛】本题考查方差.18、【分析】从题型可知为”将军饮马”的题型,连接CE,CE即为所求最小值.【详解】∵△ABC是等边三角形,∴B点关于AD的对称点就是C点,连接CE交AD于点H,此时HE+HB的值最小.∴CH=BH,∴HE+HB=CE,根据等边三角形的性质,可知三条高的长度都相等,∴CE=AD=.故答案为:.【点睛】本题考查三角形中动点最值问题,关键在于寻找对称点即可求出最值.三、解答题(共66分)19、问题背景①∠ADC=135°;②证明见解析;迁移应用:①证明见解析;②BF=.【分析】问题背景①利用等腰三角形的性质以及三角形的内角和定理即可解决问题.②利用面积法解决问题即可.迁移应用①如图1中,连BD,BE,DE.证明EF=FC,∠CEF=60即可解决问题.②过B作BH⊥AE于H,设BH=AH=EH=x,利用面积法求解即可.【详解】问题背景①∵BC=BD=BA,BD⊥AC,∴∠CBD=∠ABD∠ABC=45°,∴∠BCD=∠BDC(180°﹣45°)=67.5°,∠BDA=∠BAD=67.5°,∴∠ADC=∠BDC+∠BDA=135°.②如图1中,设AB=BC=a,∴S△ABC∵BE⊥AC,∠BCA=∠BAC=45°,∴BE=AE=CE∵S△ABC,∴a1AC11a1=AC1,∴AB1+BC1=AC1迁移应用:①证明:如图1中,连BD,BE,DE.∵AD=AB=BC=CD=1,∴△ABD≌△BCD(SSS),∴∠BAD=∠BCD∵∠BAD=60°,∴△ABD和△CBD为等边三角形∵C沿BM对称得E点,∴BM垂直平分CE,∴设∠CBF=∠EBF=α,EF=CF,∴∠BEC=90°﹣α,∴∠ABE=110°﹣1α,∴∠BAE=∠BEA=30°+α,∴∠AEC=110°,∴∠CEF=60°,∴△CEF为等边三角形②解:易知∠BFH=30°当∠BAF=45°时,△ABE为等腰直角三角形过B作BH⊥AE于H,∴设BH=AH=EH=x,∴S△ABE⋅1x⋅x=x1S△ABE⋅1x⋅x=1,∴x1=1,即x∵BF=1BH,∴BF=1.【点睛】本题属于四边形综合题,考查了解直角三角形等腰三角形的性质,等边三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题,学会利用面积法解决问题,属于中考常考题型.20、(1)4+;(2).【分析】(1)利用完全平方公式,根据二次根式得运算法则计算即可得答案;(2)利用加减消元法解方程组即可得答案.【详解】(1)原式=1+2+3﹣=4+2﹣=4+.(2)①+②得3x=6,解得:x=2,把x=2代入①得2+y=1,解得:y=﹣1,∴方程组的解为.【点睛】本题考查了二次根式的运算和解二元一次方程组,熟练掌握二次根式得运算法则及加减法解二元一次方程组是解题关键.21、,.【分析】直接将括号里面通分运算,进而利用分式的混合运算法则计算得出答案.【详解】解:===,当x=1时,原式===.【点睛】本题考查分式方程的化简求值,关键在于熟练掌握运算方法.22、(1)证明见解析(2)40°.【分析】(1)根据菱形的对边平行且相等可得AB=CD,AB∥CD,然后证明得到BE=CD,BE∥CD,从而证明四边形BECD是平行四边形,再根据平行四边形的对边相等即可得证.(2)根据两直线平行,同位角相等求出∠ABO的度数,再根据菱形的对角线互相垂直可得AC⊥BD,然后根据直角三角形两锐角互余计算即可得解.【详解】(1)∵四边形ABCD是菱形,∴AB=CD,AB∥CD.又∵BE=AB,∴BE=CD,BE∥CD.∴四边形BECD是平行四边形.∴BD=EC.(2)∵四边形BECD是平行四边形,∴BD∥CE,∴∠ABO=∠E=50°.又∵四边形ABCD是菱形,∴AC丄BD.∴∠BAO=90°﹣∠ABO=40°.23、2.7米.【解析】先根据勾股定理求出AB的长,同理可得出BD的长,进而可得出结论.【详解】在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.2米,∴AB2=0.72+2.22=6.1.在Rt△A′BD中,∵∠A′DB=90°,A′D=1.5米,BD2+A′D2=A′B′2,∴BD2+1.52=6.1,∴BD2=2.∵BD>0,∴BD=2米.∴CD=BC+BD=0.7+2=2.7米.答:小

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论