河北省石家庄市晋州市第一中学2023-2024学年高一上数学期末调研模拟试题含解析_第1页
河北省石家庄市晋州市第一中学2023-2024学年高一上数学期末调研模拟试题含解析_第2页
河北省石家庄市晋州市第一中学2023-2024学年高一上数学期末调研模拟试题含解析_第3页
河北省石家庄市晋州市第一中学2023-2024学年高一上数学期末调研模拟试题含解析_第4页
河北省石家庄市晋州市第一中学2023-2024学年高一上数学期末调研模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省石家庄市晋州市第一中学2023-2024学年高一上数学期末调研模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.为了得到函数的图象,只需将函数图象上所有的点A.向左平行移动个单位长度 B.向右平行移动个单位长度C.向左平行移动个单位长度 D.向右平行移动个单位长度2.定义在上的函数满足,且,,则不等式的解集为()A. B.C. D.3.已知命题:,,则是()A., B.,C., D.,4.已知矩形,,,沿矩形的对角线将平面折起,若四点都在同一球面上,则该球面的面积为()A. B.C. D.5.已知函数,,则函数的值域为()A B.C. D.6.定义运算:,则函数的图像是()A. B.C. D.7.直线与圆x2+y2=1在第一象限内有两个不同的交点,则的取值范围是()A. B.C. D.8.若函数分别是上的奇函数、偶函数,且满足,则有()A. B.C. D.9.若直线过点且倾角为,若直线与轴交于点,则点的坐标为()A. B.C. D.10.已知函数在上单调递减,且关于的方程恰好有两个不相等的实数解,则的取值范围是()A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.已知函数(为常数)的一条对称轴为,若,且满足,在区间上是单调函数,则的最小值为__________.12.已知圆:,为圆上一点,、、,则的最大值为______.13.设是定义在区间上的严格增函数.若,则a的取值范围是______14.函数在区间上的单调性是______.(填写“单调递增”或“单调递减”)15.若,则_________三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.如图,在四棱锥P-ABCD中,侧面PAD是正三角形,且与底面ABCD垂直,底面ABCD是边长为2的菱形,∠BAD=60°,N是PB的中点,E为AD的中点,过A,D,N的平面交PC于点M.求证:(1)EN∥平面PDC;(2)BC⊥平面PEB;(3)平面PBC⊥平面ADMN.17.已知在第一象限,若,,,求:(1)边所在直线的方程;18.某兴趣小组在研究性学习活动中,通过对某商店一种商品销售情况的调查发现:该商品在过去的一个月内(以天计)的日销售价格(元)与时间(天)的函数关系近似满足(为常数).该商品的日销售量(个)与时间(天)部分数据如下表所示:(天)(个)已知第天该商品日销售收入为元.(1)求出该函数和的解析式;(2)求该商品的日销售收入(元)的最小值.19.已知函数.(1)当时,解不等式;(2)若不等式在上恒成立,求实数的取值范围.20.已知全集,,(Ⅰ)求;(Ⅱ)求21.如图,等腰梯形ABCD中,,角,,,F在线段BC上运动,过F且垂直于线段BC的直线l将梯形ABCD分为左、右两个部分,设左边部分含点B的部分面积为y分别求当与时y的值;设,试写出y关于x的函数解析

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、B【解析】根据诱导公式将函数变为正弦函数,再减去得到.【详解】函数又故将函数图像上的点向右平移个单位得到故答案为:B.【点睛】本题考查的是三角函数的平移问题,首先保证三角函数同名,不是同名通过诱导公式化为同名,在平移中符合左加右减的原则,在写解析式时保证要将x的系数提出来,针对x本身进行加减和伸缩.2、B【解析】对变形得到,构造新函数,得到在上单调递减,再对变形为,结合,得到,根据的单调性,得到解集.【详解】,不妨设,故,即,令,则,故在上单调递减,,不等式两边同除以得:,因为,所以,即,根据在上单调递减,故,综上:故选:B3、D【解析】根据命题的否定的定义写出命题的否定,然后判断【详解】命题:,的否定是:,故选:D4、C【解析】矩形ABCD,AB=6,BC=8,矩形的对角线AC=10为该球的直径,所以该球面的面积为.故选C.5、B【解析】先判断函数的单调性,再利用单调性求解.【详解】因为,在上都是增函数,由复合函数的单调性知:函数,在上为增函数,所以函数的值域为,故选:B6、A【解析】先求解析式,再判断即可详解】由题意故选:A【点睛】本题考查函数图像的识别,考查指数函数性质,是基础题7、D【解析】如图所示:当直线过(1,0)时,将(1,0)代入直线方程得:m=;当直线与圆相切时,圆心到切线的距离d=r,即,解得:m=舍去负值.则直线与圆在第一象限内有两个不同的交点时,m的范围为.故选D8、D【解析】函数分别是上的奇函数、偶函数,,由,得,,,解方程组得,代入计算比较大小可得.考点:函数奇偶性及函数求解析式9、C【解析】利用直线过的定点和倾斜角写出直线的方程,求出与轴的交点,得出答案【详解】直线过点且倾角为,则直线方程为,化简得令,解得,点的坐标为故选:C【点睛】本题考查点斜式直线方程的应用,考查学生计算能力,属于基础题10、C【解析】由在,上单调递减,得,由在上单调递减,得,作出函数且在上的大致图象,利用数形结合思想能求出的取值范围【详解】解:由在上单调递减,得,又由且在上单调递减,得,解得,所以,作出函数且在上的大致图象,由图象可知,在上,有且仅有一个解,故在上,同样有且仅有一个解,当,即时,联立,即,则,解得:,当时,即,由图象可知,符合条件综上:故选:C二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】根据是的对称轴可取得最值,即可求出的值,进而可得的解析式,再结合对称中心的性质即可求解.【详解】因为是的对称轴,所以,化简可得:,即,所以,有,,可得,,因为,且满足,在区间上是单调函数,又因为对称中心,所以,当时,取得最小值.故答案为:.12、53【解析】设,则,从而求出,再根据的取值范围,求出式子的最大值.【详解】设,因为为圆上一点,则,且,则(当且仅当时取得最大值),故答案为:53.【点睛】本题属于圆与距离的应用问题,主要考查代数式的最值求法.解决此类问题一是要将题设条件转化为相应代数式;二是要确定代数式中变量的取值范围.13、.【解析】根据题意,列出不等式组,即可求解.【详解】由题意,函数是定义在区间上的严格增函数,因为,可得,解得,所以实数a的取值范围是.故答案为:.14、单调递增【解析】求出函数单调递增区间,再判断作答.【详解】函数的图象对称轴为,因此,函数的单调递增区间为,而,所以函数在区间上的单调性是单调递增.故答案为:单调递增15、【解析】先求得,然后求得.【详解】,.故答案为:三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)见证明(2)见证明(3)见证明【解析】(1)先证明四边形DENM为平行四边形,利用线面平行的判定定理即可得到证明;(2)先证明AD⊥平面PEB,由AD∥BC可得BC⊥平面PEB;(3)由(2)知BC⊥平面PEB可得PB⊥MN,由已知得PB⊥AN,即可证得PB⊥平面ADMN,利用面面垂直的判定定理即可得到证明.【详解】(1)∵AD∥BC,BC⊂平面PBC,AD⊄平面PBC,∴AD∥平面PBC.又平面ADMN∩平面PBC=MN,∴AD∥MN.又∵AD∥BC,∴MN∥BC又∵N为PB的中点,∴M为PC的中点,∴MN=BC∵E为AD中点,DE=AD=BC=MN,∴DEMN,∴四边形DENM为平行四边形,∴EN∥DM.又∵EN⊄平面PDC,DM⊂平面PDC,∴EN∥平面PDC(2)∵四边形ABCD是边长为2的菱形,且∠BAD=60°,E为AD中点,∴BE⊥AD.又∵PE⊥AD,PE∩BE=E,∴AD⊥平面PEB.∵AD∥BC,∴BC⊥平面PEB(3)由(2)知AD⊥PB又∵PA=AB,且N为PB的中点,∴AN⊥PB∵AD∩AN=A,∴PB⊥平面ADMN.又∵PB⊂平面PBC,∴平面PBC⊥平面ADMN.【点睛】本题考查线面与平面垂直的判定,直线与平面平行的判定,直线与平面垂直的判定,属于基本知识的考查17、(1);(2)或.【解析】(1)直接写出直线方程得解;(2)求出直线的斜率即得解.小问1详解】解:因为,,所以直线所在直线方程为.【小问2详解】解:当点在直线上方时,由题得直线的斜率为,所以边所在直线点斜式方程为;当点在直线下方时,由题得直线的斜率为,所以边所在直线的点斜式方程为.综合得直线的方程为或.18、(1),(2)最小值为元【解析】(1)利用可求得的值,利用表格中的数据可得出关于、的方程组,可解得、的值,由此可得出函数和的解析式;(2)求出函数的解析式,利用基本不等式、函数单调性求得在且、且的最小值,比较大小后可得出结论.【小问1详解】解:依题意知第天该商品的日销售收入为,解得,所以,.由表格可知,解得.所以,.【小问2详解】解:由(1)知,当且时,,当且时,.,当时,由基本不等式可得,当且仅当时,等号成立,即.当时,因为函数、均为减函数,则函数为减函数,所以当时,取得最小值,且.综上所述,当时,取得最小值,且.故该商品的日销售收入的最小值为元.19、(1);(2).【解析】(1)根据对数函数的定义域及单调性求解即可;(2)由题意原问题转化为在上恒成立,分与两种情况分类讨论,求出最值解不等式即可.【详解】(1)时,函数定义域为解得不等式的解集为(2)设,由题意知,解得,在上恒成立在上恒成立令,的图象是开口向下,对称轴方程为的抛物线.①时,上恒成立等价于解得,这与矛盾.②当时,在上恒成立等价于解得或又综上所述,实数的取值范围是【点睛】关键点点睛:由题意转化为在上恒成立,分类讨论去掉对数符号,转化为二次函数在上最大值或最小值,是解题的关键所在,属于中档题.20、(Ⅰ)(Ⅱ)【解析】两集合A,B的交集为两集合的相同的元素构成的集合,并集为两集合所有的元素构成的集合,补集为全集中除去集合中

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论