河北省唐山市乐亭一中2024届高一数学第一学期期末综合测试试题含解析_第1页
河北省唐山市乐亭一中2024届高一数学第一学期期末综合测试试题含解析_第2页
河北省唐山市乐亭一中2024届高一数学第一学期期末综合测试试题含解析_第3页
河北省唐山市乐亭一中2024届高一数学第一学期期末综合测试试题含解析_第4页
河北省唐山市乐亭一中2024届高一数学第一学期期末综合测试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省唐山市乐亭一中2024届高一数学第一学期期末综合测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12小题,共60分)1.,则A.1 B.2C.26 D.102.已知函数在区间上单调递减,则实数的取值范围是()A. B.C. D.3.“”是“幂函数为偶函数”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.要得到函数的图象,只需将函数的图象()A.向左平移 B.向右平移C.向右平移 D.向左平移5.总体由编号为01,02,…,49,50的50个个体组成,利用下面的随机数表选取6个个体,选取方法是从随机数表第7行的第9列和第10列数字开始从左到右依次选取两个数字,则选出的第4个个体的编号为()附:第6行至第8行的随机数表274861987164414870862888851916207477011116302404297979919624512532114919730649167677873399746732263579003370A.11 B.24C.25 D.206.设集合,函数,若,且,则的取值范围是()A. B.(,)C. D.(,1]7.已知定义在R上的函数满足:对任意,则A. B.0C.1 D.38.若函数f(x)满足“对任意x1,x2∈(0,+∞),当x1<x2时,都有f(x1)>f(x2)”,则f(x)解析式可以是()A.f(x)=(x-1)2 B.f(x)=exC.f(x)= D.f(x)=ln(x+1)9.甲:“x是第一象限的角”,乙:“是增函数”,则甲是乙的()A充分但不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件10.如图程序框图的算法源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的值分别为30,12,0,经过运算输出,则的值为()A.6 B.C.9 D.11.已知函数在上单调递减,则实数a的取值范围是A. B.C. D.12.已知指数函数,将函数的图象上的每个点的横坐标不变,纵坐标扩大为原来的倍,得到函数的图象,再将的图象向右平移个单位长度,所得图象恰好与函数的图象重合,则a的值是()A. B.C. D.二、填空题(本大题共4小题,共20分)13.已知,若,则的最小值是___________.14.已知,且,写出一个满足条件的的值___________15.若函数在上单调递增,则的取值范围是__________16.已知,则的最小值为___________三、解答题(本大题共6小题,共70分)17.已知函数(1)根据函数单调性的定义,证明在区间上单调递减,在区间上单调递增;(2)令,若对,,都有成立,求实数取值范围18.已知不等式的解集是(1)若且,求的取值范围;(2)若,求不等式的解集19.已知集合,(1)若,,求;(2)集合A,B能否相等?若能,求出a,b的值;若不能,请说明理由.20.如图,在等腰梯形中,,(1)若与共线,求k的值;(2)若P为边上的动点,求的最大值21.三角形ABC的三个顶点A(-3,0),B(2,1),C(-2,3),求:(1)BC边所在直线的方程;(2)BC边上高线AD所在直线的方程22.已知函数的图象在定义域上连续不断.若存在常数,使得对于任意的,恒成立,称函数满足性质.(1)若满足性质,且,求的值;(2)若,试说明至少存在两个不等的正数,同时使得函数满足性质和.(参考数据:)(3)若函数满足性质,求证:函数存在零点.

参考答案一、选择题(本大题共12小题,共60分)1、B【解析】根据题意,由函数的解析式可得,进而计算可得答案.【详解】根据题意,,则;故选B.【点睛】本题考查分段函数函数值的计算,注意分析函数的解析式.解决分段函数求值问题的策略:(1)在求分段函数的值f(x0)时,一定要首先判断x0属于定义域的哪个子集,然后再代入相应的关系式;(2)分段函数是指自变量在不同的取值范围内,其对应法则也不同的函数,分段函数是一个函数,而不是多个函数;分段函数的定义域是各段定义域的并集,值域是各段值域的并集,故解分段函数时要分段解决;(3)求f(f(f(a)))的值时,一般要遵循由里向外逐层计算的原则.2、C【解析】求出函数的定义域,由单调性求出a的范围,再由函数在上有意义,列式计算作答.【详解】函数定义域为,,因在,上单调,则函数在,上单调,而函数在区间上单调递减,必有函数在上单调递减,而在上递增,则在上递减,于是得,解得,由,有意义得:,解得,因此,,所以实数的取值范围是.故选:C3、C【解析】根据函数的奇偶性的定义和幂函数的概念,结合充分条件、必要条件的判定方法,即可求解.详解】由,即,解得或,当时,,此时函数的定义域为关于原点对称,且,所以函数为偶函数;当时,,此时函数的定义域为关于原点对称,且,所以函数为偶函数,所以充分性成立;反之:幂函数,则满足,解得或或,当时,,此时函数为偶函数;当时,,此时函数为偶函数,当时,,此时函数为奇函数函数,综上可得,实数或,即必要性成立,所以“”是“幂函数为偶函数”的充要条件.故选:C.4、B【解析】根据左右平移的平移特征(左加右减)即可得解.【详解】解:要得到函数的图象,只需将函数的图象向右平移个单位即可.故选:B.5、C【解析】根据题意,直接从所给随机数表中读取,即可得出结果.【详解】由题意,编号为的才是需要的个体;由随机数表依次可得:,故第四个个体编号为25.故选:C【点睛】本题考查了随机数表的读法,注意重复数据只取一次,属于基础题.6、B【解析】按照分段函数先求出,由和解出的取值范围即可.【详解】,则,∵,解得,又故选:B.7、B【解析】,且,又,,由此可得,,是周期为的函数,,,故选B.考点:函数的奇偶性,周期性,对称性,是对函数的基本性质的考察.【易错点晴】函数满足则函数关于中心对称,,则函数关于轴对称,常用结论:若在上的函数满足,则函数以为周期.本题中,利用此结论可得周期为,进而,需要回到本题利用题干条件赋值即可.8、C【解析】根据条件知,f(x)在(0,+∞)上单调递减对于A,f(x)=(x-1)2在(1,+∞)上单调递增,排除A;对于B,f(x)=ex在(0,+∞)上单调递增,排除B;对于C,f(x)=在(0,+∞)上单调递减,C正确;对于D,f(x)=ln(x+1)在(0,+∞)上单调递增,排除D.9、D【解析】由正弦函数的单调性结合充分必要条件的定义判定得解【详解】由x是第一象限的角,不能得到是增函数;反之,由是增函数,x也不一定是第一象限角故甲是乙的既不充分又不必要条件故选D【点睛】本题考查充分必要条件的判定,考查正弦函数的单调性,是基础题10、D【解析】利用程序框图得出,再利用对数的运算性质即可求解.【详解】当时,,,当时,,,当时,,,当时,,所以.故选:D【点睛】本题考查了循环结构嵌套条件结构以及对数的运算,解题的关键是根据程序框图求出输出的结果,属于基础题.11、C【解析】由函数单调性的定义,若函数在上单调递减,可以得到函数在每一个子区间上都是单调递减的,且当时,,求解即可【详解】若函数在上单调递减,则,解得.故选C.【点睛】本题考查分段函数的单调性.严格根据定义解答,本题保证随的增大而减小,故解答本题的关键是的最小值大于等于的最大值12、D【解析】根据函数图象变换求出变换后的函数解析式,结合已知条件可得出关于实数的等式,进而可求得实数的值.【详解】由题意可得,再将的图象向右平移个单位长度,得到函数,又因为,所以,,整理可得,因为且,解得.故选:D.二、填空题(本大题共4小题,共20分)13、16【解析】乘1后借助已知展开,然后由基本不等式可得.【详解】因为,所以当且仅当,,即时,取“=”号,所以的最小值为16.故答案为:1614、π(答案不唯一)【解析】利用,可得,又,确定可得结果.【详解】因为,所以,,则,或,,又,故满足要求故答案为:π(答案不唯一)15、【解析】由题意根据函数在区间上为增函数及分段函数的特征,可求得的取值范围【详解】∵函数在上单调递增,∴函数在区间上为增函数,∴,解得,∴实数的取值范围是故答案为【点睛】解答此类问题时要注意两点:一是根据函数在上单调递增得到在定义域的每一个区间上函数都要递增;二是要注意在分界点处的函数值的大小,这一点容易忽视,属于中档题16、【解析】根据基本不等式,结合代数式的恒等变形进行求解即可.【详解】解:因为a>0,b>0,且4a+b=2,所以有:,当且仅当时取等号,即时取等号,故答案为:.三、解答题(本大题共6小题,共70分)17、(1)证明见解析(2)【解析】(1)由单调性定义证明;(2)换元,设,,由(1)求得的范围,然后由二次函数性质求得最大值和最小值,由最大值减去最小值不大于可得的范围【小问1详解】证明:设,,且,则,当时,∴,,∴,∴,即,∴函数在上单调递减当时,∴,,∴,∴,即,∴函数在上单调递增综上,函数在上单调递减,在上单调递增【小问2详解】解:由题意知,令,,由(1)可知函数在上单调递减,在上单调递增,∴,∵函数的对称轴方程为,∴函数在上单调递减,当时,取得最大值,,当时,取得最小值,,所以,,又∵对,,都有恒成立,∴,即,解得,又∵,∴k的取值范围是18、(1)(2)【解析】(1)根据且知道满足不等式,不满足不等式,解出即可得出答案(2)根据知道是方程的两个根,利用韦达定理求出a值,再带入不等式,解出不等式即可【详解】(1)(2)∵,∴是方程的两个根,∴由韦达定理得解得∴不等式即为:其解集为【点睛】本题考查元素与集合的关系、一元二次不等式与一元二次等式的关系,属于基础题19、(1),或;(2)能,,【解析】(1)代入数据,根据集合的交集和补集运算法则即可求出结论;(2)根据集合相等的概念即可求出答案.详解】解:(1)当,时,,∵,或,∴,或;(2)∵,若,则可变成,∵,则,解得;若,则可变成,而,不可能;综上:,20、(1);(2)12【解析】(1)选取为基底,用基底表示其他向量后,由向量共线可得;(2)设,,求得,由函数知识得最大值【详解】(1)不共线,以它们为基底,由已知,又与共线,所以存在实数,使得,即,解得;(2)等腰梯形中,,,则,设,,则,,所以时,取得最大值12【点睛】关键点点睛:本题考查向量的共线,向量的数量积,解题关键是以为基底,其它向量都用基底表示,然后求解计算21、(1)x+2y-4=0(2)2x-y+6=0【解析】(1)直接根据两点式公式写出直线方程即可;(2)先根据直线的垂直关系求出高线的斜率,代入点斜式方程即可【详解】(1)BC边所在直线的方程为:=,即x+2y-4=0;(2)∵BC的斜率K1=-,∴BC边上的高AD的斜率K=2,∴BC边上的高线AD所在直线的方程为:y=2(x+3),即2x-y+6=0【点睛】此题考查了中点坐标公式以及利用两点式求直线方程的方法,属于基础题22、(1)(2)答案见解析(3)证明见解析【解析】(1)由满足性质可得恒成立,取可求,取可求,取可求,取求,由此可求的值;(2)设满足,利用零点存在定理证明关于的方程至少有两个解,证明至少存在两个不等的正数,同时使得函数满足性质和;(3)分别讨论,,时函数的零点的存在性,由此完成证明.【小问1详解】因为满足性质,所以对于任意的x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论