贵州省贵阳附中2023年高一上数学期末考试试题含解析_第1页
贵州省贵阳附中2023年高一上数学期末考试试题含解析_第2页
贵州省贵阳附中2023年高一上数学期末考试试题含解析_第3页
贵州省贵阳附中2023年高一上数学期末考试试题含解析_第4页
贵州省贵阳附中2023年高一上数学期末考试试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

贵州省贵阳附中2023年高一上数学期末考试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,共60分)1.下列选项正确的是()A. B.C. D.2.下列关系式中,正确的是A. B.C. D.3.直线的倾斜角是()A.30° B.60°C.120° D.150°4.设奇函数在上单调递增,且,则不等式的解集是()A B.或C. D.或5.已知某几何体的三视图如图所示,则该几何体的最长棱为()A.4 B.C. D.26.已知两个非零向量,满足,则下面结论正确的是A. B.C. D.7.已知偶函数在区间单调递减,则满足的x取值范围是A. B.C. D.8.已知角终边上一点,则A. B.C. D.9.一个多面体的三视图如图所示,则该多面体的表面积为()A.21+ B.18+C.21 D.1810.将函数的周期扩大到原来的2倍,再将函数图象左移,得到图象对应解析式是()A. B.C. D.11.已知幂函数的图像过点,若,则实数的值为A. B.C. D.12.若函数存在两个零点,且一个为正数,另一个为负数,则的取值范围为A. B.C. D.二、填空题(本大题共4小题,共20分)13.若点在过两点的直线上,则实数的值是________.14.下列说法中,所有正确说法的序号是__________①终边落在轴上角的集合是;②函数图象一个对称中心是;③函数在第一象限是增函数;④为了得到函数的图象,只需把函数的图象向右平移个单位长度15.我国采用的“密位制”是6000密位制,即将一个圆周分为6000等份,每一个等份是一个密位,那么120密位等于______rad16.学校某研究性学习小组在对学生上课注意力集中情况的调查研究中,发现其在40分钟的一节课中,注意力指数与听课时间(单位:分钟)之间的关系满足如图所示的图象,当时,图象是二次函数图象的一部分,其中顶点,过点;当时,图象是线段BC,其中.根据专家研究,当注意力指数大于62时,学习效果最佳.要使得学生学习效果最佳,则教师安排核心内容的时间段为____________.(写成区间形式)三、解答题(本大题共6小题,共70分)17.已知函数(且).(1)当时,,求的取值范围;(2)若在上最小值大于1,求的取值范围.18.设二次函数在区间上的最大值、最小值分别是M、m,集合若,且,求M和m的值;若,且,记,求的最小值19.已知函数.(1)解不等式;(2)若函数,其中为奇函数,为偶函数,若不等式对任意恒成立,求实数的取值范围.20.已知函数f(x)=2x,g(x)=(4﹣lnx)•lnx+b(b∈R)(1)若f(x)>0,求实数x的取值范围;(2)若存在x1,x2∈[1,+∞),使得f(x1)=g(x2),求实数b的取值范围;21.记函数的定义域为集合,函数的定义域为集合(Ⅰ)求集合;(Ⅱ)若,求实数的取值范围22.给出以下定义:设m为给定的实常数,若函数在其定义域内存在实数,使得成立,则称函数为“函数”.(1)判断函数是否为“函数”;(2)若函数为“函数”,求实数a的取值范围;(3)已知为“函数”,设.若对任意的,,当时,都有成立,求实数的最大值.

参考答案一、选择题(本大题共12小题,共60分)1、A【解析】根据指数函数的性质一一判断可得;【详解】解:对于A:在定义域上单调递减,所以,故A正确;对于B:在定义域上单调递增,所以,故B错误;对于C:因为,,所以,故C错误;对于D:因为,,即,所以,故D错误;故选:A2、C【解析】不含任何元素的集合称为空集,即为,而代表由单元素0组成的集合,所以,而与的关系应该是.故选C.3、C【解析】设直线的倾斜角为,得到,即可求解,得到答案.【详解】设直线的倾斜角为,又由直线,可得直线的斜率为,所以,又由,解得,即直线的倾斜角为,故选:C【点睛】本题主要考查了直线的斜率与倾斜角的关系,以及直线方程的应用,其中解答中熟记直线的斜率和直线的倾斜角的关系是解答的关键,着重考查了推理与运算能力,属于基础题.4、D【解析】由奇偶性可将所求不等式化为;利用奇偶性可判断出单调性和,分别在和的情况下,利用单调性解得结果.【详解】为奇函数,;又在上单调递增,,在上单调递增,;,即;当时,,;当时,,;的解集为或.故选:D.【点睛】方法点睛:本题考查利用函数单调性和奇偶性求解函数不等式的问题,解决此类问题中,奇偶性和单调性的作用如下:(1)奇偶性:统一不等式两侧符号,同时根据奇偶函数的对称性确定对称区间的单调性;(2)单调性:将函数值的大小关系转化为自变量之间的大小关系.5、B【解析】根据三视图得到几何体的直观图,然后结合图中的数据计算出各棱的长度,进而可得最长棱【详解】由三视图可得,该几何体是如图所示的四棱锥,底面是边长为2的正方形,侧面是边长为2的正三角形,且侧面底面根据图形可得四棱锥中的最长棱为和,结合所给数据可得,所以该四棱锥的最长棱为故选B【点睛】在由三视图还原空间几何体时,要结合三个视图综合考虑,根据三视图表示的规则,空间几何体的可见轮廓线在三视图中为实线、不可见轮廓线在三视图中为虚线.在还原空间几何体实际形状时,一般是以主视图和俯视图为主,结合左视图进行综合考虑.熟悉常见几何体的三视图,能由三视图得到几何体的直观图是解题关键.考查空间想象能力和计算能力6、B【解析】,所以,故选B考点:平面向量的垂直7、D【解析】根据题意,结合函数的奇偶性与单调性分析可得,解不等式可得x的取值范围,即可得答案【详解】根据题意,偶函数在区间单调递减,则在上为增函数,则,解可得:,即x的取值范围是;故选D【点睛】本题考查函数奇偶性与单调性综合应用,注意将转化为关于x不等式,属于基础题8、C【解析】由题意利用任意角的三角函数的定义,求得的值【详解】∵角终边上一点,∴,,,则,故选C【点睛】本题主要考查任意角的三角函数的定义,属于基础题9、A【解析】由题意,该多面体的直观图是一个正方体挖去左下角三棱锥和右上角三棱锥,如下图,则多面体的表面积.故选A.考点:多面体的三视图与表面积.10、D【解析】直接利用函数图象的与平移变换求出函数图象对应解析式【详解】解:将函数y=5sin(﹣3x)的周期扩大为原来的2倍,得到函数y=5sin(x),再将函数图象左移,得到函数y=5sin[(x)]=5sin()=5sin()故选D【点睛】本题考查函数y=Asin(ωx+φ)的图象变换,属于基础题.11、D【解析】将点代入函数解析式,求出参数值,令函数值等于3,可求出自变量的值.详解】依题意有2=4a,得a=,所以,当时,m=9.【点睛】本题考查函数解析式以及由函数值求自变量,一般由函数值求自变量的值时要注意自变量取值范围以及题干的要求,避免多解.12、C【解析】根据题意画出函数图像,由图像即可分析出由一个正零点,一个负零点a的范围【详解】如图,若存在两个零点,且一个为正数,另一个为负数,则,故选【点睛】本题考查了绝对值函数及零点的简单应用,属于基础题二、填空题(本大题共4小题,共20分)13、【解析】先由直线过两点,求出直线方程,再利用点在直线上,求出的值.【详解】由直线过两点,得,则直线方程为:,得,即,又点在直线上,得,得.故答案为:【点睛】本题考查了已知两点求直线的方程,直线方程的应用,属于容易题.14、②④【解析】当时,,终边不在轴上,①错误;因为,所以图象的一个对称中心是,②正确;函数的单调性相对区间而言,不能说在象限内单调,③错误;函数的图象向右平移个单位长度,得到的图象,④正确.故填②④15、##【解析】根据已知定义,结合弧度制的定义进行求解即可.【详解】设120密位等于,所以有,故答案为:16、【解析】当,时,设,把点代入能求出解析式;当,时,设,把点、代入能求出解析式,结合题设条件,列出不等式组,即可求解.详解】当x∈(0,12]时,设,过点(12,78)代入得,a则f(x),当x∈(12,40]时,设y=kx+b,过点B(12,78)、C(40,50)得,即,由题意得,或得4<x≤12或12<x<28,所以4<x<28,则老师就在x∈(4,28)时段内安排核心内容,能使得学生学习效果最佳,故答案为:(4,28)【点睛】本题考查解析式的求法,考查不等式组的解法,解题时要认真审题,注意待定系数法的合理运用,属于中档题三、解答题(本大题共6小题,共70分)17、(1).(2).【解析】(1)当时,得到函数的解析式,把不等式,转化为,即可求解;(2)由在定义域内单调递减,分类讨论,即可求解函数的最大值,得到答案.【详解】(1)当时,,,得.(2)在定义域内单调递减,当时,函数在上单调递减,,得.当时,函数在上单调递增,,不成立.综上:.【点睛】本题主要考查了指数函数的图象与性质的应用问题,其中解答中由指数函数的解析式转化为相应的不等式,以及根据指数函数的单调性分类讨论求解是解答的关键,着重考查了推理与运算能力.18、(Ⅰ),;(Ⅱ).【解析】(1)由……………1分又…3分…………4分……………5分……………6分(2)x=1∴,即……………8分∴f(x)=ax2+(1-2a)x+a,x∈[-2,2]其对称轴方程为x=又a≥1,故1-……………9分∴M=f(-2)="9a-2"…………10分m=……………11分g(a)=M+m=9a--1……………14分=………16分19、(1)(1,3);(2).【解析】(1)设t=2x,利用f(x)>16﹣9×2x,转化不等式为二次不等式,求解即可;(2)利用函数的奇偶性以及函数恒成立,结合对勾函数的图象与性质求解函数的最值,推出结果【详解】解:(1)设t=2x,由f(x)>16﹣9×2x得:t﹣t2>16﹣9t,即t2﹣10t+16<0∴2<t<8,即2<2x<8,∴1<x<3∴不等式的解集为(1,3)(2)由题意得解得.2ag(x)+h(2x)≥0,即,对任意x∈[1,2]恒成立,又x∈[1,2]时,令,在上单调递增,当时,有最大值,所以.【点睛】本题考查函数与方程的综合应用,二次函数的性质,对勾函数的图像与性质以及函数恒成立的转化,考查计算能力20、(1)(0,+∞)(2)[,+∞)【解析】(1)解指数不等式2x>2﹣x可得x>﹣x,运算即可得解;(2)由二次函数求最值可得函数g(x)的值域为,函数f(x)的值域为A=[,+∞),由题意可得A∩B≠,列不等式b+4运算即可得解.【详解】解:(1)因为f(x)>0⇔2x0,∴2x>2﹣x,∴x>﹣x,即x>0∴实数x的取值范围为(0,+∞)(2)设函数f(x),g(x)在区间[1,+∞)的值域分别为A,B∵f(x)=2x在[1,+∞)上单调递增,又∴A=[,+∞)∵g(x)=(4﹣lnx)•lnx+b=﹣(lnx﹣2)2+b+4∵x∈[1,+∞),∴lnx∈[0,+∞),∴g(x)≤b+4,即依题意可得A∩B≠,∴b+4,即b∴实数b的取值范围为[,+∞)【点睛】本题考查了指数不等式的解法,主要考查了二次函数最值的求法,重点考查了集合的运算,属中档题.21、(Ⅰ);(Ⅱ)【解析】(1)根据根式有意义的条件,并结合指数函数的性质解不等式得到集合A;(2)先求解集合,由得到A是B的子集,根据集合包含关系列出关于a的不等式,求得a的取值范围【详解】(Ⅰ)由已知得:(Ⅱ)由∵,∴或∵,∴,∴22、(1)是(2)(3)【解析】(1)根据定义判得时,满足,进而判断;(2)根据题意得,,进而整理得存在实数使得,再结合和讨论求解即可;(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论