2024届浙江省富阳二中数学高一上期末质量跟踪监视试题含解析_第1页
2024届浙江省富阳二中数学高一上期末质量跟踪监视试题含解析_第2页
2024届浙江省富阳二中数学高一上期末质量跟踪监视试题含解析_第3页
2024届浙江省富阳二中数学高一上期末质量跟踪监视试题含解析_第4页
2024届浙江省富阳二中数学高一上期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届浙江省富阳二中数学高一上期末质量跟踪监视试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,共60分)1.设,为正数,且,则的最小值为()A. B.C. D.2.已知幂函数是偶函数,则函数恒过定点A. B.C. D.3.某公司位员工的月工资(单位:元)为,,…,,其均值和方差分别为和,若从下月起每位员工的月工资增加元,则这位员工下月工资的均值和方差分别为A., B.,C, D.,4.已知正实数满足,则的最小值是()A B.C. D.5.用区间表示不超过的最大整数,如,设,若方程有且只有3个实数根,则正实数的取值范围为()A B.C. D.6.设a,b是两条不同的直线,α,β是两个不同的平面,则下列正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,,则7.如果函数在区间上单调递减,则的取值范围是()A. B.C. D.以上选项均不对8.已知sin(α-π)+cos(π-α)A.-2 B.2C.-3 D.39.函数的部分图象如图所示,则函数的解析式为()A. B.C. D.10.已知函数的图象经过点,则的值为()A. B.C. D.11.如图,直角梯形ABCD中,A=90°,B=45°,底边AB=5,高AD=3,点E由B沿折线BCD向点D移动,EMAB于M,ENAD于N,设BM=,矩形AMEN的面积为,那么与的函数关系的图像大致是()A. B.C. D.12.函数的零点所在区间是A. B.C. D.二、填空题(本大题共4小题,共20分)13.平面向量,,(R),且与的夹角等于与的夹角,则___.14.若,,则以、为根的一元二次方程可以是___________.(写出满足条件的一个一元二次方程即可)15.命题“,”的否定为____.16.已知△ABC的三个顶点分别为A(2,3),B(-1,-2),C(-3,4),则BC边上的中线AD所在的直线方程为_____三、解答题(本大题共6小题,共70分)17.已知奇函数(a为常数)(1)求a的值;(2)若函数有2个零点,求实数k的取值范围;18.在①;②关于x的不等式的解集是这两个条件中任选一个,补充在下面的问题(1)中并解答,若同时选择两个条件作答,以第一个作答计分(1)已知______,求关于的不等式的解集;(2)在(1)的条件下,若非空集合,,求实数的取值范围19.已知函数求函数的最小正周期与对称中心;求函数的单调递增区间20.已知(1)求函数的单调递增区间与对称轴方程;(2)当时,求的最大值与最小值21.已知.(1)若,且,求的值.(2)若,且,求的值.22.已知函数为奇函数,,其中(1)若函数h(x)的图象过点A(1,1),求实数m和n的值;(2)若m=3,试判断函数在上的单调性并证明;(3)设函数,若对每一个不小于3的实数,都恰有一个小于3的实数,使得成立,求实数m的取值范围

参考答案一、选择题(本大题共12小题,共60分)1、B【解析】将拼凑为,利用“1”的妙用及其基本不等式求解即可.【详解】∵,∴,即,∴,当且仅当,且时,即,时等号成立故选:.2、D【解析】根据幂函数和偶函数的定义可得的值,进而可求得过的定点.【详解】因为是幂函数,所以得或,又偶函数,所以,函数恒过定点.故选:.【点睛】本题主要考查的是幂函数和偶函数的定义,以及对数函数性质的应用,是基础题.3、D【解析】均值为;方差为,故选D.考点:数据样本的均值与方差.4、B【解析】根据题中条件,得到,展开后根据基本不等式,即可得出结果.【详解】因为正实数满足,所以,当且仅当,即时,等号成立.故选:B.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.5、A【解析】由方程的根与函数交点的个数问题,结合数形结合的数学思想方法,作图观察y={x}的图象与y=﹣kx+1的图象有且只有3个交点时k的取值范围,即可得解.【详解】方程{x}+kx﹣1=0有且只有3个实数根等价于y={x}的图象与y=﹣kx+1的图象有且只有3个交点,当0≤x<1时,{x}=x,当1≤x<2时,{x}=x﹣1,当2≤x<3时,{x}=x﹣2,当3≤x<4时,{x}=x﹣3,以此类推如上图所示,实数k的取值范围为:k,即实数k的取值范围为:(,],故选A【点睛】本题考查了方程的根与函数交点的个数问题,数形结合的数学思想方法,属中档题6、D【解析】由空间中直线、平面的位置关系逐一判断即可得解.【详解】解:由a,b是两条不同的直线,α,β是两个不同的平面,知:在A中,若,,则或,故A错误;在B中,若,,则,故B错误;在C中,若,,则或,故C错误;在D中,若,,,则由面面垂直的判定定理得,故D正确;故选:D【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,属中档题7、A【解析】先求出二次函数的对称轴,由区间,在对称轴的左侧,列出不等式解出的取值范围【详解】解:函数的对称轴方程为:,函数在区间,上递减,区间,在对称轴的左侧,,故选:A【点睛】本题考查二次函数图象特征和单调性,以及不等式的解法,属于基础题8、B【解析】应用诱导公式及正余弦的齐次式,将题设等式转化为-tanα-1【详解】sin(α-π)+∴-tanα-1=-3tan故选:B.9、B【解析】由图像求出周期再根据可得,再由,代入可求,进而可求出解析式.【详解】由图象可知,,得,又∵,∴.当时,,即,解得.又,则,∴函数的解析式为.故选:B.【点睛】本题主要考查了由三角函数的图像求函数解析式,需熟记正弦型三角函数的周期公式,属于基础题.10、C【解析】将点的坐标代入函数解析式,求出的值即可.【详解】因为函数的图象经过点,所以,则.故选:C.11、A【解析】根据已知可得:点E在未到达C之前,y=x(5-x)=5x-x2;且x≤3,当x从0变化到2.5时,y逐渐变大,当x=2.5时,y有最大值,当x从2.5变化到3时,y逐渐变小,到达C之后,y=3(5-x)=15-3x,x>3,根据二次函数和一次函数的性质.故选A.考点:动点问题的函数图象;二次函数的图象.12、C【解析】根据函数零点存在性定理进行判断即可【详解】∵,,∴,∴函数在区间(2,3)上存在零点故选C【点睛】求解函数零点存在性问题常用的办法有三种:一是用定理,二是解方程,三是用图象.值得说明的是,零点存在性定理是充分条件,而并非是必要条件二、填空题(本大题共4小题,共20分)13、2【解析】,与的夹角等于与的夹角,所以考点:向量的坐标运算与向量夹角14、【解析】利用两数和的完全平方公式得到,再利用根与系数的关系写出一个满足条件的方程.【详解】因为,,所以,即该一元二次方程的两根之和为3,两根之积为2,所以以、为根的一元二次方程可以是.15、,【解析】利用全称量词命题的否定可得出结论.【详解】命题“,”为全称量词命题,该命题的否定为“,”.故答案为:,.16、【解析】求出的坐标后可得的直线方程.【详解】的坐标为,故的斜率为,故直线的方程为即,故答案为:三、解答题(本大题共6小题,共70分)17、(1)(2)【解析】(1)由奇函数中求解即可;(2)函数有2个零点,可转为为也即函数与的图象有两个交点,结合图象即可求解【小问1详解】由是上的奇函数,可得,所以,解得,经检验满足奇函数,所以;【小问2详解】函数有2个零点,可得方程函数有2个根,即有2个零点,也即函数与的图象有两个交点,由图象可知所以实数得取值范围是18、(1)条件选择见解析,或(2)【解析】(1)若选①,分和,求得a,再利用一元二次不等式的解法求解;若选②,根据不等式的解集为,求得a,b,再利用一元二次不等式的解法求解;(2)由,得到求解;【小问1详解】解:若选①,若,解得,不符合条件若,解得,则符合条件将代入不等式并整理得,解得或,故或若选②,因为不等式的解集为,所以,解得将代入不等式整理得,解得或故或【小问2详解】∵,∴,又∵,∴或,∴或,∴19、(1)最小正周期,对称中心为;(2)【解析】直接利用三角函数关系式的恒等变变换,把函数的关系式变形成正弦型函数,进一步求出函数的最小正周期和对称中心;直接利用整体思想求出函数的单调递增区间【详解】函数,,,所以函数的最小正周期为,令:,解得:,所以函数的对称中心为由于,令:,解得:,所以函数的单调递增区间为【点睛】本题主要考查了三角函数的化简,以及函数的性质,属于基础题,强调基础的重要性,是高考中的常考知识点;对于三角函数解答题20、(1)单调递增区间为,k∈Z.对称轴方程为,其中k∈Z(2)f(x)的最大值为2,最小值为–1【解析】(1)因为,由,求得,k∈Z,可得函数f(x)的单调递增区间为,k∈Z由,求得,k∈Z故f(x)的对称轴方程为,其中k∈Z(2)因为,所以,故有,故当即x=0时,f(x)的最小值为–1,当即时,f(x)的最大值为221、(1)或;(2).【解析】(1)利用诱导公式结合化简,再解方程结合即可求解;(2)结合(1)中将已知条件化简可得,再由同角三角函数基本关系即可求解.【小问1详解】.所以,因为,则,或.【小问2详解】由(1)知:,所以,即,所以,所以,即,可得或.因为,则,所以.所以,故.22、(1)(2)单调递增,证明见解析(3)【解析】(1)运用奇函数的定义可得,再由图象经过点,解方程可得;(2)在,递增.运用单调性的定义,结合因式分解和指数函数的单调性,即可得证;(3)求得当时,;当时,;分别讨论,,,运用基本不等式和函数的单调性,求得的范围【小问1详解】函数为奇函数,可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论