版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市平谷区2024届数学高一上期末达标检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知圆(,为常数)与.若圆心与圆心关于直线对称,则圆与的位置关系是()A.内含 B.相交C.内切 D.相离2.已知两个非零向量,满足,则下面结论正确的是A. B.C. D.3.在中,若,则的形状为()A.等边三角形 B.直角三角形C.钝角三角形 D.不含角的等腰三角形4.已知命题p:x为自然数,命题q:x为整数,则p是q的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件5.“x=”是“sinx=”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.函数lgx=3,则x=()A1000 B.100C.310 D.307.若集合,,则A. B.C. D.8.已知函数f(x)=若f(f(0))=4a,则实数a等于A. B.C.2 D.99.已知幂函数的图象过点,则A. B.C.1 D.210.下列与的终边相同的角的集合中正确的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知表示不超过实数的最大整数,如,,为取整函数,是函数的零点,则__________12.设,则______.13.若在幂函数的图象上,则______14.已知,则____________.15.函数的图像恒过定点的坐标为_________.16.我国古代数学名著《九章算术》中将底面为矩形且有一侧棱垂直于底面的四棱锥称为“阳马”,现有一“阳马”如图所示,平面,,,,则该“阳马”外接球的表面积为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,,求,的值;求的值18.已知集合,(1),求实数的取值范围;(2)设,,若是的必要不充分条件,求实数的取值范围19.已知函数.(1)若的图象恒在直线上方,求实数的取值范围;(2)若不等式在区间上恒成立,求实数的取值范围.20.已函数.(1)求f(x)的最小正周期;(2)求f(x)的单调递增区间.21.已知函数,且(1)证明函数在上是增函数(2)求函数在区间上的最大值和最小值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由对称求出,再由圆心距与半径关系得圆与圆的位置关系【详解】,,半径为,关于直线的对称点为,即,所以,圆半径为,,又,所以两圆相交故选:B2、B【解析】,所以,故选B考点:平面向量的垂直3、B【解析】利用三角形的内角和,结合差角的余弦公式,和角的正弦公式,即可得出结论【详解】解:由题意可得sin(A﹣B)=1+2cos(B+C)sin(A+C),∴sin(A﹣B)=1﹣2cosAsinB,∴sinAcosB﹣cosAsinB=1﹣2cosAsinB,∴sinAcosB+cosAsinB=1,∴sin(A+B)=1,∴A+B=90°,∴△ABC是直角三角形故选:B【点睛】本题考查差角的余弦公式,和角的正弦公式,考查学生的计算能力,属于基础题4、A【解析】根据两个命题中的取值范围,分析是否能得到pq和qp【详解】若x为自然数,则它必为整数,即p⇒q但x为整数不一定是自然数,如x=-2,即qp故p是q的充分不必要条件故选:A.5、A【解析】根据充分不必要条件的定义可得答案.【详解】当时,成立;而时得(),故选:A【点睛】本题考查充分不必要条件判断,一般可根据如下规则判断:(1)若是的必要不充分条件,则对应集合是对应集合的真子集;(2)是的充分不必要条件,则对应集合是对应集合的真子集;(3)是的充分必要条件,则对应集合与对应集合相等;(4)是的既不充分又不必要条件,对的集合与对应集合互不包含6、A【解析】由lgx=3,可得直接计算出结果.【详解】由lgx=3,有:则,故选:A【点睛】本题考查对数的定义,属于基础题.7、C【解析】因为集合,,所以A∩B=x故选C.8、C【解析】,选C.点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.9、B【解析】先利用待定系数法求出幂函数的表达式,然后将代入求得的值.【详解】设,将点代入得,解得,则,所以,答案B.【点睛】主要考查幂函数解析式的求解以及函数值求解,属于基础题.10、C【解析】由任意角的定义判断【详解】,故与其终边相同的角的集合为或角度制和弧度制不能混用,只有C符合题意故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、2【解析】由于,所以,故.【点睛】本题主要考查对新定义概念的理解,考查利用二分法判断函数零点的大概位置.首先研究函数,令无法求解出对应的零点,考虑用二分法来判断,即计算,则零点在区间上.再结合取整函数的定义,可求出的值.12、1【解析】根据指数式与对数式的互化,得到,,再结合对数的运算法则,即可求解.【详解】由,可得,,所以.故答案为:.13、27【解析】由在幂函数的图象上,利用待定系数法求出幂函数的解析式,再计算的值【详解】设幂函数,,因为函数图象过点,则,,幂函数,,故答案为27【点睛】本题主要考查了幂函数的定义与解析式,意在考查对基础知识的掌握情况,是基础题14、【解析】求得函数的最小正周期为,进而计算出的值(其中),再利用周期性求解即可.【详解】函数的最小正周期为,当时,,,,,,,所以,,,因此,.故答案为:.15、(1,2)【解析】令真数,求出的值和此时的值即可得到定点坐标【详解】令得:,此时,所以函数的图象恒过定点,故答案为:16、【解析】以,,为棱作长方体,长方体的对角线即为外接球的直径,从而求出外接球的半径,进而求出外接球的表面积.【详解】由题意,以,,为棱作长方体,长方体的对角线即为外接球的直径,设外接球的半径为,则故.故答案为:【点睛】本题考查了多面体外接球问题以及球的表面积公式,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】正切的二倍角公式得,再由同角三角函数关系式即可得的值.先计算然后由角的范围即可确定角.【详解】,且,所以:故:,,,所以:,由于:所以:,所以:,,,,所以:【点睛】本题考查三角函数关系式的恒等变换,考查给值求角问题,通过求角的某种三角函数值来求角,在选取函数时,有以下原则:用已知三角函数值的角来表示未知角,(1)已知正切函数值,则选正切函数;(2)已知正弦、余弦函数值,则选正弦或余弦函数.若角的范围是,则选正弦、余弦皆可;若角的范围是,则选余弦较好;若角的范围为,则选正弦较好18、(1)(2)【解析】(1)化简集合,,由,利用两个集合左右端点的大小分类得出实数的取值范围(2)根据题意可得,推不出,即是的真子集,进而得出实数的取值范围【小问1详解】由题意,,且,或,或,实数的取值范围是【小问2详解】命题,命题,是的必要不充分条件,,推不出,即是的真子集,,解得:实数的取值范围为19、(1);(2).【解析】(1)根据给定条件可得恒成立,再借助判别式列出不等式求解即得.(2)根据给定条件列出不等式,再分离参数,借助函数的单调性求出函数值范围即可推理作答.【小问1详解】因函数的图象恒在直线上方,即,,于是得,解得,所以实数的取值范围是:.【小问2详解】依题意,,,令,,令函数,,,,而,即,,则有,即,于是得在上单调递增,因此,,,即,从而有,则,所以实数的取值范围是.20、(1);(2),k∈Z.【解析】(1)首先利用三角恒等变换化简函数,根据周期公式求函数周期;(2)代入单调递增区间,求解函数的单调递增区间.【详解】解:(1).所以,f(x)的周期为.(2)由(k∈Z),得(k∈Z).所以,f(x)的单调递增区间是,k∈Z.21、(1)证明见解析;(2)的最大值为,最小值为.【解析】(1)根据求出,求得,再利用函数单调性的定义,即可证得结论;(2)根据在上的单调性,求在上的最值即可.【详解】解:(1)因为,可得,解得,所以,任取,则,因为,所以,可得,即且,所以,即,所以在上是增函数;(2)由(1)知,在上是增函数,同理,任取时,,其中,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度艺术品买卖合同标的及质量标准
- 2024年度网络广告发布合同
- 2024年度茶楼与旅行社合作合同
- 2024年度企业品牌形象重塑与市场营销策划合同
- 2024年度汽车经销商授权合同2篇
- 道路与桥梁工程毕业设计计算书
- 2024年度航天科技项目研发与投资合同
- 2024年度租赁合同标的物的保险责任
- 2024中国电建西北勘测设计研究院限公司招聘15人(陕西)易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国电信全渠道运营中心校园招聘易考易错模拟试题(共500题)试卷后附参考答案
- 大学生职业生涯规划(师范类)
- 工科中的设计思维学习通超星课后章节答案期末考试题库2023年
- 部编版四年级语文上册课内阅读复习试题含答案全套
- 教科版科学五年级上册第7课 计量时间和我们的生活课件
- 大学生就业指导-面试技巧课件
- 人教版八年级语文上册《苏州园林》评课稿
- 建设工程第三方质量安全巡查标准
- 混凝土超声检测缺陷报告
- 枫桥式乡镇派出所事迹材料
- 华为认证 HCIA-Security 安全 H12-711考试题库(共800多题)
- 国开电大《小学数学教学研究》形考任务3答案
评论
0/150
提交评论