版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第二章微积分学的创始人:德国数学家Leibniz导数描述函数变化快慢描述函数变化程度都是描述物质运动的工具(从微观上研究函数)导数与微分导数思想最早由法国数学家Ferma在研究极值问题中提出.英国数学家Newton12/9/2023高数导数概念一、引例二、导数的定义三、导数的几何意义四、函数的可导性与连续性的关系五、单侧导数第一节导数的概念12/9/2023高数导数概念一、引例1.变速直线运动的速度设描述质点运动位置的函数为则到的平均速度为而在时刻的瞬时速度为自由落体运动12/9/2023高数导数概念2.曲线的切线斜率曲线在M点处的切线割线MN的极限位置MT(当时)割线MN的斜率切线MT的斜率12/9/2023高数导数概念两个问题的共性:瞬时速度切线斜率所求量为函数增量与自变量增量之比的极限.类似问题还有:加速度角速度线密度电流强度是速度增量与时间增量之比的极限是转角增量与时间增量之比的极限是质量增量与长度增量之比的极限是电量增量与时间增量之比的极限变化率问题12/9/2023高数导数概念二、导数的定义定义1.设函数在点存在,并称此极限为记作:即则称函数若的某邻域内有定义,在点处可导,在点的导数.12/9/2023高数导数概念运动质点的位置函数在时刻的瞬时速度曲线在M点处的切线斜率12/9/2023高数导数概念不存在,就说函数在点不可导.若也称在若函数在开区间
I内每点都可导,此时导数值构成的新函数称为导函数.记作:注意:就称函数在
I内可导.的导数为无穷大.若极限12/9/2023高数导数概念例1.求函数(C为常数)的导数.解:即例2.求函数解:12/9/2023高数导数概念说明:对一般幂函数(为常数)例如,(以后将证明)12/9/2023高数导数概念例3.求函数的导数.解:则即类似可证得12/9/2023高数导数概念例4.求函数的导数.解:
即12/9/2023高数导数概念原式是否可按下述方法作:例5.证明函数在x=0不可导.证:不存在,例6.设存在,求极限解:原式12/9/2023高数导数概念三、导数的几何意义曲线在点的切线斜率为若曲线过上升;若曲线过下降;若切线与x轴平行,称为驻点;若切线与
x轴垂直.12/9/2023高数导数概念曲线在点处的切线方程:法线方程:12/9/2023高数导数概念例7.问曲线哪一点有铅直切线?哪一点处的切线与直线平行?写出其切线方程.解:令得对应则在点(1,1),(–1,–1)处与直线平行的切线方程分别为即故在原点(0,0)有铅直切线12/9/2023高数导数概念四、函数的可导性与连续性的关系定理1.证:设在点x
处可导,存在,因此必有其中故所以函数在点x连续.注意:函数在点x连续,但在该点未必可导.反例:在x=0处连续,但不可导.即12/9/2023高数导数概念在点的某个右邻域内五、单侧导数若极限则称此极限值为在处的右导数,记作即(左)(左)例如,在
x=0处有定义2
.设函数有定义,存在,12/9/2023高数导数概念定理2.函数在点且存在简写为在点处右导数存在定理3.函数在点必右连续.(左)(左)若函数与都存在,则称显然:在闭区间[a,b]上可导在开区间
内可导,在闭区间
上可导.可导的充分必要条件是且12/9/2023高数导数概念内容小结1.导数的实质:3.导数的几何意义:4.可导必连续,但连续不一定可导;5.已学求导公式:6.判断可导性不连续,一定不可导.直接用导数定义;看左右导数是否存在且相等.2.增量比的极限;切线的斜率;12/9/2023高数导数概念思考与练习1.函数在某点处的导数区别:是函数,是数值;联系:注意:有什么区别与联系??与导函数12/9/2023高数导数概念2.设存在,则3.已知则4.
若时,恒有问是否在可导?解:由题设由夹逼准则故在可导,且12/9/2023高数导数概念5.
设,问a取何值时,在都存在,并求出解:显然该函数在x=0连续.故时此时在都存在,12/9/2023高数导数概念作业P862,5,6,7,11,16(2),18,2012/9/2023高数导数概念牛顿(1642–1727)伟大的英国数学家,物理学家,天文学家和自然科学家.他在数学上的卓越贡献是创立了微积分.1665年他提出正流数(微分)术,次年又提出反流数(积分)术,并于1671年完成《流数术与无穷级数》一书(1736年出版).他还著有《自然哲学的数学原理》和《广义算术》等.12/9/2023高数导数概念莱布尼茨
(1646–1716)德国数学家,哲学家.他和牛顿同为微积分的创始人,他在《学艺》杂志上发表的几篇有关微积分学的论文中,有的早于牛顿,所用微积分符号也远远优于牛顿.他还设计了作乘法的计算机,系统地阐述二进制计数法,并把它与中国的八卦联系起来.12/
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 年产xx亚光漆项目可行性研究报告(项目说明)
- 消防安全月知识培训
- 中班数学活动教案:它们一样多吗
- 人教版部编本六年级上册《盼》教学设计及教学反思
- 2022-2023学年广东省深圳市罗湖区六年级上学期期末英语试卷
- 二年级上册数学教案-8.1数学广角-搭配(1)-人教版
- 护理跌倒坠床的护理
- 胸痛应急护理培训
- 9 数学广角-鸡兔同笼(教案)四年级下册数学人教版
- 一年级下册数学导学案-2 20以内的退位减法第6课时 练习课|人教新课标
- 17 难忘的泼水节(第一课时)公开课一等奖创新教学设计
- 一年级数学20以内加减法口算混合练习题
- 矿山安全生产培训
- 2024年执业药师继续教育专业答案
- 非ST段抬高型急性冠脉综合征诊断和治疗指南(2024)解读
- 自然资源调查监测劳动和技能竞赛
- 建筑公司安全生产专项整治三年行动实施方案
- 承包酒店鲜榨果汁合同范本
- 2024-2030年中国无菌注射剂行业市场发展趋势与前景展望战略分析报告
- 2024-2025学年人教版七年级数学上册期末达标测试卷(含答案)
- 第七章-应聘应试技巧
评论
0/150
提交评论