版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年河南省驻马店市确山二高高一上数学期末复习检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.已知,,,则下列关系中正确的是A. B.C. D.2.若,,,则a,b,c的大小关系是A. B.C. D.3.已知a=log23+log2,b=log29-log2,c=log32,则a,b,c的大小关系是()A.a=b<c B.a=b>cC.a<b<c D.a>b>c4.若,都为正实数,,则的最大值是()A. B.C. D.5.已知、是两条不同的直线,、是两个不同的平面,给出下列命题:①若,,则;②若,,且,则;③若,,则;④若,,且,则其中正确命题的序号是()A.②③ B.①④C.②④ D.①③6.刘徽(约公元225年—295年),魏晋期间伟大的数学家,中国古典数学理论的奠基人之一.他在割圆术中提出的“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,这可视为中国古代极限观念的佳作,割圆术的核心思想是将一个圆的内接正边形等分成个等腰三角形(如图所示),当变得很大时,这n个等腰三角形的面积之和近似等于圆的面积,运用割圆术的思想,可以得到的近似值为()A. B.C. D.7.与角的终边相同的最小正角是()A. B.C. D.8.半径为3cm的圆中,有一条弧,长度为cm,则此弧所对的圆心角为()A. B.C. D.9.在我国古代数学名著《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑,如图,在鳖臑ABCD中,AB⊥平面BCD,且AB=BC=CD,则异面直线AC与BD所成角的余弦值为()A. B.-C.2 D.10.函数在单调递减,且为奇函数.若,则满足的的取值范围是().A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.设函数fx=ex-1,x≥a-xx2-5x+6,x<a,则当时,12.在中,三个内角所对的边分别为,,,,且,则的取值范围为__________13.半径为2cm,圆心角为的扇形面积为.14.关于函数与有下面三个结论:①函数的图像可由函数的图像平移得到②函数与函数在上均单调递减③若直线与这两个函数的图像分别交于不同的A,B两点,则其中全部正确结论的序号为____15.如下图所示,三棱锥外接球的半径为1,且过球心,围绕棱旋转后恰好与重合.若,则三棱锥的体积为_____________.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知函数是偶函数,且,.(1)当时,求函数的值域;(2)设,,求函数的最小值;(3)设,对于(2)中的,是否存在实数,使得函数在时有且只有一个零点?若存在,求出实数的取值范围;若不存在,请说明理由.17.已知,,,.(1)求的值;(2)求的值:(3)求的值.18.已知函数,只能同时满足下列三个条件中的两个:①的解集为;②;③最小值为(1)请写出这两个条件的序号,求的解析式;(2)求关于的不等式的解集.19.读下列程序,写出此程序表示的函数,并求当输出的时,输入的的值.20.已知函数的值域为,函数.(Ⅰ)求;(Ⅱ)当时,若函数有零点,求的取值范围,并讨论零点的个数.21.在三棱锥中,平面,,,,分别是,的中点,,分别是,的中点.(1)求证:平面.(2)求证:平面平面.
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、C【解析】利用函数的单调性、正切函数的值域即可得出【详解】,,∴,又∴,则下列关系中正确的是:故选C【点睛】本题考查了指对函数的单调性、三角函数的单调性的应用,属于基础题2、C【解析】由题意,根据实数指数函数性质,可得,根据对数的运算性质,可得,即可得到答案.【详解】由题意,根据实数指数函数的性质,可得,根据对数的运算性质,可得;故选C【点睛】本题主要考查了指数函数与对数函数的运算性质的应用,其中解答中合理运用指数函数和对数函数的运算性质,合理得到的取值范围是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.3、B【解析】利用对数的运算性质求出a、b、c的范围,即可得到正确答案.【详解】因为a=log23+log2=log2=log23>1,b=log29-log2=log2=a,c=log32<log33=1,所以a=b>c.故选:B4、D【解析】由基本不等式,结合题中条件,直接求解,即可得出结果.【详解】因为,都为正实数,,所以,当且仅当,即时,取最大值.故选:D5、A【解析】对于①当,时,不一定成立;对于②可以看成是平面的法向量,是平面的法向量即可;对于③可由面面垂直的判断定理作出判断;对于④,也可能相交【详解】①当,时,不一定成立,m可能在平面所以错误;②利用当两个平面的法向量互相垂直时,这两个平面垂直,故成立;③因为,则一定存在直线在,使得,又可得出,由面面垂直的判定定理知,,故成立;④,,且,,也可能相交,如图所示,所以错误,故选A【点睛】本题以命题的真假判断为载体考查了空间直线与平面的位置关系,熟练掌握空间线面关系的判定及几何特征是解答的关键6、B【解析】将一个圆的内接正边形等分成个等腰三角形;根据题意,可知个等腰三角形的面积和近似等于圆的面积,从而可求的近似值.【详解】将一个圆的内接正边形等分成个等腰三角形,设圆的半径为,则,即,所以.故选:B.7、D【解析】写出与角终边相同的角的集合,即可得出结论.【详解】与角终边相同角的集合为,当时,取得最小正角为.故选:D.8、A【解析】利用弧长公式计算即可【详解】,故选:A9、A【解析】如图所示,分别取,,,的中点,,,,则,,,或其补角为异面直线与所成角【详解】解:如图所示,分别取,,,的中点,,,,则,,,或其补角为异面直线与所成角设,则,,,异面直线与所成角的余弦值为,故选:A【点睛】平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角;②认定:证明作出的角就是所求异面直线所成的角;③计算:求该角的值,常利用解三角形;④取舍:由异面直线所成的角的取值范围是,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角10、D【解析】由已知中函数的单调性及奇偶性,可将不等式化为,解得答案【详解】解:由函数为奇函数,得,不等式即为,又单调递减,所以得,即,故选:D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、①.②.【解析】当时得到,令,再利用定义法证明在上单调递减,从而得到,令,,根据指数函数的性质得到函数的单调性,即可求出的最小值,即可得到的最小值;分别求出与的零点,根据恰有两个零点,即可求出的取值范围;【详解】解:当时,令,,设且,则因为且,所以,,所以,所以,所以在上单调递减,所以,令,,函数在定义域上单调递增,所以,所以的最小值为;对于,令,即,解得,对于,令,即,解得或或,因为fx=ex-1,x≥a-xx2-5x+6,x<a恰有两个零点,则和一定为的零点,不为的零点,所以,即;故答案为:;;12、【解析】∵,,且,∴,∴,∴在中,由正弦定理得,∴,∴,∵,∴∴∴的取值范围为答案:13、【解析】求出扇形的弧长,利用扇形面积公式求解即可.【详解】因为半径为,圆心角为的扇形,弧长为,所以扇形面积为:故答案为.【点睛】本题考查扇形的面积公式的应用,考查计算能力,属于基础题.14、①②##②①【解析】根据三角函数的平移法则和单调性知①②正确,取代入计算得到③错误,得到答案.【详解】向左平移个单位得到,①正确;函数在上单调递减,函数在上单调递减,②正确;取,则,,,③错误.故答案为:①②15、【解析】作于,可证得平面,得,得等边三角形,利用是球的直径,得,然后计算出,再应用棱锥体积公式计算体积【详解】∵围绕棱旋转后恰好与重合,∴,作于,连接,则,,∴又过球心,∴,而,∴,同理,,,由,,,得平面,∴故答案为:【点睛】易错点睛:本题考查求棱锥的体积,解题关键是作于,利用旋转重合,得平面,这样只要计算出的面积,即可得体积,这样作图可以得出,为旋转所形成的二面角的平面角,这里容易出错在误认为旋转,即为.旋转是旋转形成的二面角为.应用作出二面角的平面角三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)(2)(3)存在,【解析】(1)由条件求出,由此求出,利用单调性求其在时的值域;(2)利用换元法,考虑轴与区间的位置关系求,(3)令,由已知可得函数,,在上有且仅有一个交点,由此列不等式求的取值范围.【小问1详解】因为函数是偶函数,故而,可得,则,故易知在上单调递增,故,;故【小问2详解】令,故;则,对称轴为①当时,在上单增,故;②当时,在上单减,在上单增,故;③当时,在上单减,故;故函数的最小值【小问3详解】由(2)知当时,;则,即令,,问题等价于两个函数与的图象在上有且只有一个交点;由,函数的图象开口向下,对称轴为,在上单调递减,在上单调递增,可图知;故【点睛】函数的零点个数与函数和的图象的交点个数相等,故可通过函数图象研究形如函数的零点问题.17、(1);(2);(3).【解析】(1)同角三角函数平方关系求得,,再由及差角余弦公式求值即可.(2)由诱导公式、二倍角余弦公式可得,即可求值.(3)由(1)及和角正余弦公式求、,由(2)及平方关系求,最后应用差角余弦公式求,结合角的范围求.【小问1详解】由题设,,,∴,,又.【小问2详解】.【小问3详解】由,则,由,则,∴,,又,,则,∴,而,故.18、(1)(2)答案见解析【解析】(1)若选①②,则的解集不可能为;若选②③,,开口向下,则无最小值.只能是选①③,由函数的解集为可知,-1,3是方程的根,则,又由的最小值可知且在对称轴上取得最小值,从而解出;(2)由,即,然后对分类求解得答案;【小问1详解】选①②,则,开口向下,所以的解集不可能为;选①③,函数的解集为,,3是方程的根,所以的对称轴为,则,所以,又的最小值为,(1),解得,,所以则;选②③,,开口向下,则无最小值综上,.【小问2详解】由化简得若,则或;若,则不等式解集为R;若,则或当时,不等式的解集为或;当,则不等式解集为R;当,则不等式的解集为或19、【解析】阅读程序框图可知,此程序表示的函数为,当时,得.当时,得.试题解析:此程序表示的函数为,当时,得.当时,得.故当输出的时,输入的,故答案为.20、(Ⅰ);(Ⅱ)答案见详解.【解析】(Ⅰ)对分段函数求值域,分别求出每一段函数的值域,再求其并集即可;(Ⅱ)函数有零点,即表示方程有根,与函数图像有交点,因而将换元,利用二次函数性质求出其值域,再数形结合讨论零点个数即可.【详解】(Ⅰ)如下图所示:当时,;当时,,所以函数的值域为;(Ⅱ)若函数有零点,即方程有根,即与函数图像有交点,令,,当时,,此时,即函数值域为,故而:当时,函数有零点,且当或时,函数有一个零点;当时,函数有两个零点.【点睛】(1)对分段函数求值域,先求出每一段函数的值域,再求其并集即可,也可利用函数图像去求;(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 淮阴师范学院《名师成长案例研究》2021-2022学年第一学期期末试卷
- 淮阴师范学院《运河文化研究》2022-2023学年第一学期期末试卷
- 淮阴师范学院《刑法(1)》2021-2022学年第一学期期末试卷
- 淮阴师范学院《微机原理与接口技术》2022-2023学年期末试卷
- 淮阴师范学院《合唱与指挥(1)》2022-2023学年第一学期期末试卷
- 淮阴师范学院《操作系统》2022-2023学年期末试卷
- 淮阴工学院《新能源仪器分析》2021-2022学年第一学期期末试卷
- DB4117-T+419-2024兽药消毒剂生产技术要求
- DB2305-T 020-2024牛病毒性腹泻病毒pcr检测规程
- 2025超长期特别国债怎么谋划
- 好看的皮囊千篇一律有趣的灵魂万里挑一
- 某房地产公司项目定位分析
- 部编版三年级上册道德与法治作业设计
- ERAS理念下麻醉与镇痛的优化
- 2023-2024学年四川省泸州市江阳区西路学校七年级(上)期中数学试卷(含解析)
- 2023年下半年软件设计师真题 答案解析(上午选择 下午案例)全国计算机软考
- 初中英语新课程标准词汇表
- 创伤失血性休克中国急诊专家共识(2023)解读
- 学校体育与社区体育融合发展的研究
- 中国旅游地理智慧树知到课后章节答案2023年下平凉职业技术学院
- 工程竣工移交报告
评论
0/150
提交评论