2023-2024学年四川省井研中学高一数学第一学期期末达标检测试题含解析_第1页
2023-2024学年四川省井研中学高一数学第一学期期末达标检测试题含解析_第2页
2023-2024学年四川省井研中学高一数学第一学期期末达标检测试题含解析_第3页
2023-2024学年四川省井研中学高一数学第一学期期末达标检测试题含解析_第4页
2023-2024学年四川省井研中学高一数学第一学期期末达标检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年四川省井研中学高一数学第一学期期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.设长方体的长、宽、高分别为,其顶点都在一个球面上,则该球的表面积为A.3a2 B.6a2C.12a2 D.24a22.若集合A={x|-2<x<1},B={x|x<-1或x>3},则A∩B=()A.{x|-2<x<-1} B.{x|-2<x<3}C.{x|-1<x<1} D.{x|1<x<3}3.已知a,b,c∈R,那么下列命题中正确的是()A.若a>b,则ac2>bc2C.若a>b,ab<0,则1a>1b D.若a4.函数f(x)是定义在R上的奇函数,当x>0时,f(x)=﹣x+1,则当x<0时,f(x)等于()A.﹣x+1 B.﹣x﹣1C.x+1 D.x﹣15.命题“”的否定是:()A. B.C. D.6.在平面直角坐标系中,角以为始边,终边与单位圆交于点,则()A. B.C. D.7.已知幂函数f(x)=xa的图象经过点(2,),则函数f(x)为()A.奇函数且在上单调递增 B.偶函数且在上单调递减C.非奇非偶函数且在上单调递增 D.非奇非偶函数且在上单调递减8.函数的零点个数为A.1 B.2C.3 D.49.在试验“甲射击三次,观察中靶的情况”中,事件A表示随机事件“至少中靶1次”,事件B表示随机事件“正好中靶2次”,事件C表示随机事件“至多中靶2次”,事件D表示随机事件“全部脱靶”,则()A.A与C是互斥事件 B.B与C是互斥事件C.A与D是对立事件 D.B与D是对立事件10.下列不等式成立的是()A.log31C.log23<11.已知函数在区间上是增函数,则的取值范围是()A. B.C. D.12.定义在上的奇函数满足,且当时,,则()A. B.2C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.已知函数,:①函数的图象关于点对称;②函数的最小正周期是;③把函数f(2x)图象上所有点向右平移个单位长度得到的函数图象的对称轴与函数y=图象的对称轴完全相同;④函数在R上的最大值为2.则以上结论正确的序号为_______________14.已知向量,,若,,,则的值为__________15.若,则的取值范围为___________.16.已知某扇形的周长是,面积为,则该扇形的圆心角的弧度数是______.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知函数是函数图象的一条对称轴.(1)求的最大值,并写出取得最大值时自变量的取值集合;(2)求在上的单调递增区间.18.在①“xA是xB的充分不必要条件;②;③这三个条件中任选一个,补充到本题第(2)问的横线处,求解下列问题:已知集合,.(1)当a=2时,求;(2)若选,求实数a的取值范围.19.设函数()在处取最大值(Ⅰ)求的值;(Ⅱ)在中,分别是角的对边.已知,,,求的值20.计算下列各式的值:(1);(2).21.已知函数的图像如图所示.(1)求函数的解析式;(2)当时,求函数的最大值和最小值.22.已知圆的圆心在直线上,半径为,且圆经过点和点①求圆的方程②过点的直线截图所得弦长为,求直线的方程

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、B【解析】方体的长、宽、高分别为,其顶点都在一个球面上,长方体的对角线的长就是外接球的直径,所以球直径为:,所以球的半径为,所以球的表面积是,故选B2、A【解析】直接根据交集的定义即可得解.【详解】解:因为A={x|-2<x<1},B={x|x<-1或x>3},所以.故选:A.3、C【解析】根据不等式的性质或通过举反例,对四个选项进行分析【详解】A.若a>b,当c=0时,ac2=bB.若ac>bc,当c<0时,则C.因为ab<0,将a>b两边同除以ab,则1a>1D.若a2>b2且ab>0,当a<0b<0时,则a<b故选:C4、B【解析】当x<0时,,选B.点睛:已知函数的奇偶性求函数值或解析式,首先抓住奇偶性讨论函数在各个区间上的解析式,或充分利用奇偶性得出关于的方程,从而可得的值或解析式.5、A【解析】由特称命题的否定是全称命题,可得出答案.【详解】根据特称命题的否定是全称命题,可知命题“”的否定是“”.故选:A.6、A【解析】根据任意角三角函数的概念可得出,然后利用诱导公式求解.【详解】因为角以为始边,且终边与单位圆交于点,所以,则.故选:A.【点睛】当以为始边,已知角终边上一点的坐标为时,则,.7、C【解析】根据已知求出a=,从而函数f(x)=,由此得到函数f(x)是非奇非偶函数且在(0,+∞)上单调递增【详解】∵幂函数f(x)=xa的图象经过点(2,),∴2a=,解得a=,∴函数f(x)=,∴函数f(x)是非奇非偶函数且在(0,+∞)上单调递增故选C【点睛】本题考查命题真假的判断,考查幂函数的性质等基础知识,考查运算求解能力,是基础题8、C【解析】令,得到,画出和的图像,根据两个函数图像交点个数,求得函数零点个数.【详解】令,得,画出和的图像如下图所示,由图可知,两个函数图像有个交点,也即有个零点.故选C.【点睛】本小题主要考查函数零点个数的判断,考查化归与转化的数学思想方法,考查数形结合的数学思想方法,属于基础题.9、C【解析】根据互斥事件、对立事件的定义即可求解.【详解】解:因为A与C,B与C可能同时发生,故选项A、B不正确;B与D不可能同时发生,但B与D不是事件的所有结果,故选项D不正确;A与D不可能同时发生,且A与D为事件的所有结果,故选项C正确故选:C.10、A【解析】由对数的单调性直接比较大小.【详解】因为log31=log2=log24<故选:A.11、A【解析】根据二次函数的单调区间及增减性,可得到,求解即可.【详解】函数,开口向下,对称轴为函数在区间上是增函数,所以,解得,所以实数a的取值范围是.故选:A12、D【解析】根据题意,由,分析可得,即可得函数的周期为4,则有,由函数的解析式以及奇偶性可得的值,即可得答案【详解】解:根据题意,函数满足,即,则函数的周期为4,所以又由函数为奇函数,则,又由当,时,,则;则有;故选:【点睛】本题考查函数奇偶性、周期性的应用,注意分析得到函数的周期,属于中档题二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、②③④【解析】利用辅助角公式、二倍角公式化简函数、,再逐一分析各个命题,计算判断作答.【详解】依题意,函数,因,函数的图象关于点不对称,①不正确;,于是得的最小正周期是,②正确;,则把函数f(2x)图象上所有点向右平移个单位长度得到的函数,函数图象的对称轴与函数y=图象的对称轴完全相同,③正确;令,则,,当时,,所以函数在R上的最大值为2,④正确,所以结论正确的序号为②③④.故答案为:②③④【点睛】思路点睛:涉及求含有和的三角函数值域或最值问题,可以通过换元转化为二次函数在闭区间上的值域或最值问题解答.14、C【解析】分析:由,,,可得向量与平行,且,从而可得结果.详解:∵,,,∴向量与平行,且,∴.故答案为.点睛:本题主要考查共线向量的坐标运算,平面向量的数量积公式,意在考查对基本概念的理解与应用,属于中档题15、【解析】一元二次不等式,对任意的实数都成立,与x轴最多有一个交点;由对勾函数的单调性可以求出m的范围.【详解】由,得.由题意可得,,即.因为,所以,故.故答案为:16、2【解析】由扇形的周长和面积,可求出扇形的半径及弧长,进而可求出该扇形的圆心角.【详解】设扇形的半径为,所对弧长为,则有,解得,故.故答案为:2.【点睛】本题考查扇形面积公式、弧长公式的应用,考查学生的计算求解能力,属于基础题.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1),;,(2)【解析】(1)化简得,根据对称轴可得的值,进而根据正弦函数的性质可得最值;(2)根据正弦函数的性质可得在上的单调递增区间【小问1详解】由已知又是函数图象的一条对称轴,所以,得,,即,,此时,即,,此时,即,【小问2详解】,则,当时,即时,单调递增,在上的单调递增区间为.18、(1);(2)答案见解析.【解析】(1)当时,求出集合再根据并集定义求;(2)选择有AB,列不等式求解即可;选择有同样列出不等式求解;选择因为,则或,求解即可【详解】(1)当时,集合,,所以;(2)选择因为“”是“”的充分不必要条件,所以AB,因为,所以又因为,所以等号不同时成立,解得,因此实数a的取值范围是.选择因为,所以.因为,所以.又因为,所以,解得,因此实数a的取值范围是.选择因为,而,且不为空集,,所以或,解得或,所以实数a取值范围是或19、(Ⅰ);(Ⅱ).【解析】(Ⅰ)由题意得,根据在处取最大值得,即,故.(Ⅱ)由(Ⅰ)可得,故,所以,由正弦定理得,所以,故可得试题解析:(Ⅰ),因为在时取最大值,所以,故又,所以(Ⅱ)由(Ⅰ)知因为,所以,又为的内角,所以由正弦定理得,由题意得为锐角,所以.所以20、(1);(2)0.【解析】(1)直接利用根式与分数指数幂的运算法则求解即可,化简过程注意避免出现计算错误;(2)直接利用对数的运算法则求解即可,解答过程注意避免出现计算错误.【详解】(1);(2)21、(1);(2)最大值,最小值为-1.【解析】(1)由图可知,,可得,再将点代入得,结合,可得的值,即可求出函数的解析式;(2)根据函数的周期,可求时函数的最大值和最小值就是转化为求函数在区间上的最大值和最小值,结合三角函数图象,即可求出函数的最大值和最小值.试题解析:(1)由图可知:,则∴,将点代入得,,∴,,即,∵∴∴函数的解析式为.(2)∵函数的周期是∴求时函数的最大值和最小值就是转化为求函数在区间上的最大值和最小值.由图像可知,当时,函数取得最大值为,当时,函数取得最小值为.∴函数在上的最大值为,最小值为-1.点睛:已知图象求函数解析式的方法(1)根据图象得到函数的周期,再根据求得(2)可根据代点法求解,代点时一般将最值点的坐标代入解析式;也可用“五点法”求解,用此法

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论