版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年湖北省武汉市汉南区职教中心高一数学第一学期期末统考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.已知:,:,若是的必要不充分条件,则实数的取值范围是()A. B.C. D.2.已知关于的方程的两个实根为满足则实数的取值范围为A. B.C. D.3.若,则的值为A. B.C. D.4.已知,则A. B.C. D.5.函数的图象是()A. B.C. D.6.已知某产品的总成本C(单位:元)与年产量Q(单位:件)之间的关系为C=310Q2+3000.设该产品年产量为Q时的平均成本为fA.30 B.60C.900 D.1807.集合,,则()A. B.C. D.8.设集合,则()A.(1,2] B.[3,+∞)C.(﹣∞,1]∪(2,+∞) D.(﹣∞,1]∪[3,+∞)9.已知定义在R上的函数满足:对任意,则A. B.0C.1 D.310.函数,则f(log23)=()A.3 B.6C.12 D.24二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.已知平面,,直线,若,,则直线与平面的位置关系为______.12.已知角终边经过点,则___________.13.已知定义在上的偶函数,当时,,则________14.不等式的解为______15.已知函数在上单调递增,则实数a的取值范围为____.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知幂函数在上单调递增,函数(1)求实数m的值;(2)当时,记的值域分别为集合,若,求实数k的取值范围17.某种商品的市场需求量(万件)、市场供应量(万件)与市场价格(元/件)分别近似地满足下列关系:,.当时的市场价格称为市场平衡价格,此时的需求量称为平衡需求量(1)求平衡价格和平衡需求量;(2)若该商品的市场销售量(万件)是市场需求量和市场供应量两者中的较小者,该商品的市场销售额(万元)等于市场销售量与市场价格的乘积①当市场价格取何值时,市场销售额取得最大值;②当市场销售额取得最大值时,为了使得此时市场价格恰好是新的市场平衡价格,则政府应该对每件商品征税多少元?18.已知函数(,)的部分图象如图所示.(1)求的解析式;(2)若对任意,恒成立,求实数m的取值范围;(3)求实数a和正整数n,使得()在上恰有2021个零点.19.已知,,,且.(1)求的值;(2)求的值.20.已知正方体ABCD-的棱长为2.(1)求三棱锥的体积;(2)证明:.21.在中,顶点,,BC边所在直线方程为.(1)求过点A且平行于BC的直线方程;(2)求线段AB的垂直平分线方程.
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、C【解析】求解不等式化简集合,,再由题意可得,由此可得的取值范围【详解】解:由,即,解得或,所以或,,命题是命题的必要不充分条件,,则实数的取值范围是故选:C2、D【解析】利用二次方程实根分布列式可解得.【详解】设,根据二次方程实根分布可列式:,即,即,解得:.故选D.【点睛】本题考查了二次方程实根的分布.属基础题.3、B【解析】根据诱导公式将原式化简为,分子分母同除以,即可求出结果.【详解】因为,又,所以原式.故选B【点睛】本题主要考查诱导公式和同角三角函数基本关系,熟记公式即可,属于基础题型.4、D【解析】考点:同角间三角函数关系5、C【解析】由已知可得,从而可得函数图象【详解】对于y=x+,当x>0时,y=x+1;当x<0时,y=x-1.即,故其图象应为C.故选:C6、B【解析】利用基本不等式进行最值进行解题.【详解】解:∵某产品的总成本C(单位:元)与年产量Q(单位:件)之间的关系为C=∴f(Q)=当且仅当3Q10=3000Q∴fQ的最小值是60故选:B7、B【解析】解不等式可求得集合,由交集定义可得结果.【详解】,,.故选:B.8、C【解析】由题意分别计算出集合的补集和集合,然后计算出结果.【详解】解:∵A=(1,3),∴=(﹣∞,1]∪[3,+∞),∵,∴x﹣2>0,∴x>2,∴B=(2,+∞),∴(﹣∞,1]∪(2,+∞),故选:C9、B【解析】,且,又,,由此可得,,是周期为的函数,,,故选B.考点:函数的奇偶性,周期性,对称性,是对函数的基本性质的考察.【易错点晴】函数满足则函数关于中心对称,,则函数关于轴对称,常用结论:若在上的函数满足,则函数以为周期.本题中,利用此结论可得周期为,进而,需要回到本题利用题干条件赋值即可.10、B【解析】由对数函数的性质可得,再代入分段函数解析式运算即可得解.【详解】由题意,,所以.故选:B.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】根据面面平行的性质即可判断.【详解】若,则与没有公共点,,则与没有公共点,故.故答案为:.【点睛】本题考查面面平行的性质,属于基础题.12、【解析】根据正切函数定义计算【详解】由题意故答案为:13、6【解析】利用函数是偶函数,,代入求值.【详解】是偶函数,.故答案6【点睛】本题考查利用函数的奇偶性求值,意在考查转化与变形,属于简单题型.14、【解析】根据幂函数的性质,分类讨论即可【详解】将不等式转化成(Ⅰ),解得;(Ⅱ),解得;(Ⅲ),此时无解;综上,不等式的解集为:故答案为:15、【解析】由题意,利用复合函数的单调性,对数函数、二次函数的性质,求得的范围【详解】解:函数在上单调递增,函数在上单调递增,且,,解得,即,故答案:三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)(2)【解析】(1)由幂函数定义列出方程,求出m的值,检验函数单调性,舍去不合题意的m的值;(2)在第一问的基础上,由函数单调性得到集合,由并集结果得到,从而得到不等式组,求出k的取值范围.【小问1详解】依题意得:,∴或当时,在上单调递减,与题设矛盾,舍去当时,上单调递增,符合要求,故.【小问2详解】由(1)可知,当时,函数和均单调递增∴集合,又∵,∴,∴,∴,∴实数k的取值范围是.17、(1)平衡价格是30元,平衡需求量是40万件.(2)①市场价格是35元时,市场总销售额取得最大值.②政府应该对每件商品征7.5元【解析】(1)令,得,可得,此时,从而可得结果;(2)①先求出,从而得,根据二次函数的性质分别求出两段函数的最值再比较大小即可的结果;②政府应该对每件商品征税元,则供应商的实际价格是每件元,根据可得结果.试题解析:(1)令,得,故,此时答:平衡价格是30元,平衡需求量是40万件(2)①由,,得,由题意可知:故当时,,即时,;当时,,即时,,综述:当时,时,答:市场价格是35元时,市场总销售额取得最大值②设政府应该对每件商品征税元,则供应商的实际价格是每件元,故,令,得,由题意可知上述方程的解是,代入上述方程得答:政府应该对每件商品征7.5元.【方法点睛】本题主要考查阅读能力及建模能力、分段函数的解析式,属于难题.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.理解本题题意的关键是构造分段函数,构造分段函数时,做到分段合理、不重不漏,分段函数的最值是各段的最大(最小)者的最大者(最小者)18、(1)(2)(3)当时,;当时,【解析】(1)根据图象的特点,通过的周期和便可得到的解析式;(2)通过换元转化为一元二次不等式的恒成立问题,根据二次函数的特点得到,然后解出不等式即可;(3)将函数的零点个数问题,转化为的图象与直线的交点个数问题,然后分析在一个周期内与的交点情况,根据的取值情况分类讨论即可【小问1详解】根据图象可知,且,的周期为:解得:,此时,,且可得:解得:故【小问2详解】当时,令,又恒成立等价于在上恒成立令,则有:开口向上,且,只需即可满足题意故实数m的取值范围是【小问3详解】由题意可得:的图象与直线在上恰有2021个零点在上时,,分类讨论如下:①当时,的图象与直线在上无交点;②当时,的图象与直线在仅有一个交点,此时的图象与直线在上恰有2021个交点,则;③当或时,的图象与直线在上恰有2个交点,的图象与直线在上有偶数个交点,不会有2021个交点;④当时,的图象与直线在上恰有3个交点,此时才能使的图象与直线在上有2021个交点.综上,当时,;当时,.19、(1).(2)【解析】(1)由已知根据同角三角函数的基本关系可求得,根据代入即可求得求得结果.(2)由(1)利用二倍角公式,可求得,进而可得的值,根据角的范围,即可确定结果.【详解】(1)∵,且∴∴又∵∴(2)∴∴或∵∴又∵∴∵,且∴又∵∴∴【点睛】本题考查同角三角函数的基本关系,二倍角公式,两角和与差的三角函数,考查已知三角函数值求角,属于基础题.20、(1)(2)证明见解析【解析】(1)将问题转化为求即可;(2)根据线面垂直证明线线垂直.【小问1详解】在正方体ABCD-中,易知⊥平面ABD,∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度土地储备及土地一级开发转让合同4篇
- 专业物流司机长途作业合作合同版B版
- 二零二五年度羊品种改良中心羊只育种合同3篇
- 二零二五版铝灰处理项目安全风险评估合同4篇
- 2025版危化品储存场地租赁与安全检查服务合同3篇
- 个人房屋抵押借款合同2024年版
- 二零二五年度租赁合同续签与变更手续指南3篇
- 2024水池施工与防洪排涝合同3篇
- 2025年度军事设施专用柴油供应合同3篇
- 个人承建信息科技项目合同(2024年修订)
- 2025春夏运动户外行业趋势白皮书
- 《法制宣传之盗窃罪》课件
- 通信工程单位劳动合同
- 高低压配电柜产品营销计划书
- 租赁车辆退车协议
- 医疗护理技术操作规程规定
- 盘式制动器中英文对照外文翻译文献
- 社会系统研究方法的重要原则
- 重症医学科健康宣教手册
- 2022版《义务教育英语课程标准》解读培训课件
- 五个带头方面谈心谈话范文三篇
评论
0/150
提交评论