2023-2024学年安徽省安庆市潜山第二中学高一上数学期末考试模拟试题含解析_第1页
2023-2024学年安徽省安庆市潜山第二中学高一上数学期末考试模拟试题含解析_第2页
2023-2024学年安徽省安庆市潜山第二中学高一上数学期末考试模拟试题含解析_第3页
2023-2024学年安徽省安庆市潜山第二中学高一上数学期末考试模拟试题含解析_第4页
2023-2024学年安徽省安庆市潜山第二中学高一上数学期末考试模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年安徽省安庆市潜山第二中学高一上数学期末考试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,正方形ABCD的边长为2,动点E从A开始沿A→B→C的方向以2个单位长/秒的速度运动到C点停止,同时动点F从点C开始沿CD边以1个单位长/秒的速度运动到D点停止,则的面积y与运动时间x(秒)之间的函数图像大致形状是()A. B.C. D.2.已知扇形的圆心角为2弧度,其所对的弦长为2,则扇形的弧长等于A. B.C. D.3.半径为2的扇形OAB中,已知弦AB的长为2,则的长为A. B.C. D.4.明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地,送行两步恰竿齐,五尺板高离地……”某教师根据这首词设计一题:如图,已知,,则弧的长()A. B.C. D.5.已知非空集合,则满足条件的集合的个数是()A.1 B.2C.3 D.46.已知,,,则()A. B.C. D.7.函数的零点位于区间()A. B.C. D.8.已知一几何体的三视图,则它的体积为A. B.C. D.9.如图,在等腰梯形中,,分别是底边的中点,把四边形沿直线折起使得平面平面.若动点平面,设与平面所成的角分别为(均不为0).若,则动点的轨迹围成的图形的面积为A. B.C. D.10.已知角的终边经过点,则的值为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数有两个零点分别为a,b,则的取值范围是_____________12.已知,用m,n表示为___________.13.若在上恒成立,则k的取值范围是______.14.若直线经过点,且与斜率为的直线垂直,则直线的方程为__________15.已知不等式的解集是__________.16.若点P(1,﹣1)在圆x2+y2+x+y+k=0(k∈R)外,则实数k的取值范围为_____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.经市场调查,某超市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t(天)的函数,且销售量近似满足g(t)=80-2t,价格近似满足f(t)=20-|t-10|.(1)试写出该种商品的日销售额y与时间t(0≤t≤20)的函数表达式;(2)求该种商品的日销售额y的最大值与最小值.18.已知函数.(1)当函数取得最大值时,求自变量x的集合;(2)完成下表,并在平面直角坐标系内作出函数在的图象.x0y19.已知,(1)求的值;(2)求的值20.定义在上的函数,如果满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称函数的一个上界.已知函数,.(1)若函数为奇函数,求实数的值;(2)在第(1)的条件下,求函数在区间上的所有上界构成的集合;(3)若函数在上是以3为上界的有界函数,求实数的取值范围.21.如图,在正方体中,为棱、的三等分点(靠近A点).求证:(1)平面;(2)求证:平面平面.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】先求出时,的面积y的解析式,再根据二次函数的图象分析判断得解.详解】由题得时,,所以的面积y,它图象是抛物线的一部分,且含有对称轴.故选:A【点睛】本题主要考查函数的解析式的求法,考查二次函数的图象和性质,意在考查学生对这些知识的理解掌握水平.2、A【解析】根据题意画出图形,结合图形求出半径r,再计算弧长【详解】如图所示,,,过点O作,C垂足,延长OC交于D,则,;中,,从而弧长为,故选A【点睛】本题考查了弧长公式的应用问题,求出扇形的半径是解题的关键,属于基础题3、C【解析】由已知可求圆心角的大小,根据弧长公式即可计算得解【详解】设扇形的弧长为l,圆心角大小为,∵半径为2的扇形OAB中,弦AB的长为2,∴,∴故选C【点睛】本题主要考查了弧长公式的应用,考查了数形结合思想的应用,属于基础题4、C【解析】求出长后可得,再由弧长公式计算可得【详解】由题意,解得,所以,,所以弧的长为故选:C5、C【解析】由题意可知,集合为集合的子集,求出集合,利用集合的子集个数公式可求得结果.【详解】,所以满足条件的集合可以为,共3个,故选:C.【点睛】本题考查集合子集个数的计算,考查计算能力,属于基础题.6、C【解析】因为所以选C考点:比较大小7、C【解析】先研究的单调性,利用零点存在定理即可得到答案.【详解】定义域为.因为和在上单增,所以在上单增.当时,;;而;,由零点存在定理可得:函数的零点位于区间.故选:C8、C【解析】所求体积,故选C.9、D【解析】由题意,PE=BEcotθ1,PF=CFcotθ2,∵BE=CF,θ1=θ2,∴PE=PF以EF所在直线为x轴,EF的垂直平分线为y轴建立坐标系,设E(﹣,0),F(,0),P(x,y),则(x+)2+y2=[(x﹣)2+y2],∴3x2+3y2+5ax+a2=0,即(x+a)2+y2=a2,轨迹为圆,面积为故答案选:D点睛:这个题考查的是立体几何中点的轨迹问题,在求动点轨迹问题中常用的方法有:建立坐标系,将立体问题平面化,用方程的形式体现轨迹;或者根据几何意义得到轨迹,但是注意得到轨迹后,一些特殊点是否需要去掉10、C【解析】因为点在单位圆上,又在角的终边上,所以;则;故选C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据函数零点可转化为有2个不等的根,利用对数函数的性质可知,由均值不等式求解即可.详解】不妨设,因为函数有两个零点分别为a,b,所以,所以,即,且,,当且仅当,即时等号成立,此时不满足题意,,即,故答案为:12、【解析】结合换底公式以及对数的运算法则即可求出结果.详解】,故答案为:.13、【解析】首先参变分离得到在上恒成立,接着分段求出函数的最小值,最后给出k的取值范围即可.【详解】因为在上恒成立,所以在上恒成立,当时,,所以,所以,所以;当时,,所以,所以,所以;综上:k的取值范围为.故答案为:.【点睛】本题是含参数的不等式恒成立问题,此类问题都可转化为最值问题,即f(x)<a恒成立⇔a>f(x)max,f(x)>a恒成立⇔a<f(x)min.14、【解析】与斜率为的直线垂直,故得到直线斜率为又因为直线经过点,由点斜式故写出直线方程,化简为一般式:故答案为.15、【解析】结合指数函数的单调性、绝对值不等式的解法求得不等式的解集.详解】,,,或,解得或,所以不等式不等式的解集是.故答案为:16、【解析】首先把圆的一般方程化为标准方程,点在圆外,则圆心到直线的距离,从而得解.【详解】∵圆标准方程为,∴圆心坐标(,),半径r,若点(1,﹣1)在圆外,则满足k,且k>0,即﹣2<k,即实数k的取值范围是(﹣2,).故答案为:(﹣2,)【点睛】本题考查根据直线与圆的位置关系求参数的取值范围,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、解:(1)y(2)ymax=1225,ymin=600【解析】解:(Ⅰ)=(Ⅱ)当0≤t<10时,y的取值范围是[1200,1225],在t=5时,y取得最大值为1225;当10≤t≤20时,y的取值范围是[600,1200],在t=20时,y取得最小值为600(答)总之,第5天,日销售额y取得最大为1225元;第20天,日销售额y取得最小为600元18、(1)(2)答案见解析【解析】(1)由三角恒等变换求出解析式,再求得最大值时的x的集合,(2)由五点法作图,列出表格,并画图即可.【小问1详解】令,函数取得最大值,解得,所以此时x集合为.【小问2详解】表格如下:x0y11作图如下,19、(Ⅰ);(Ⅱ)【解析】解:(Ⅰ)由sin﹣2cos=0,得tan=2∴tanx=;(Ⅱ)===(﹣)+1=20、(1);(2);(3).【解析】(1)由函数为奇函数可得,即,整理得,可得,解得,经验证不合题意.(2)根据单调性的定义可证明函数在区间上为增函数,从而可得在区间上的值域为,故,从而可得所有上界构成的集合为.(3)将问题转化为在上恒成立,整理得在上恒成立,通过判断函数的单调性求得即可得到结果试题解析:(1)∵函数是奇函数,∴,即,∴,∴,解得,当时,,不合题意,舍去∴.(2)由(1)得,设,令,且,∵;∴在上是减函数,∴在上是单调递增函数,∴在区间上是单调递增,∴,即,∴在区间上的值域为,∴,故函数在区间上的所有上界构成的集合为.(3)由题意知,上恒成立,∴,∴,因此在上恒成立,∴设,,,由知,设,则,,∴在上单调递减,在上单调递增,∴在上的最大值为,在上的最小值为,∴∴的取值范围.点睛:(1)本题属于新概念问题,解题的关键是要紧紧围绕所给出的新定义,然后将所给问题转化为函数的最值(或值域)问题处理(2)求函数的最值(或值域)时,利用单调性是常用的方法之一,为此需要先根据定义判断出函数的单调性,再结合所给的定义域求出最值(或值域)21、(1)见解析;(2)见解析.【解析】(1)欲证:平面,根据直线与平面平行的判定定理可知,只需证与平面内一条直线平行,连接,可知,则,又平面,平面,满足定理所需条件;(2)欲证:平面平面,根据面面垂直的判定定理可知,在平

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论