塑料模具毕业设计外文翻译(附英文原文)_第1页
塑料模具毕业设计外文翻译(附英文原文)_第2页
塑料模具毕业设计外文翻译(附英文原文)_第3页
塑料模具毕业设计外文翻译(附英文原文)_第4页
塑料模具毕业设计外文翻译(附英文原文)_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

毕业设计外文资料翻译系部:机械工程系专业:材料成型及控制工程姓名:学号:外文出处:附件:1.外文资料翻译2.外文原文2023年03月05日一个描述电铸镍壳在注塑模具的应用的技术研究——UniversidaddeLasPalmasdeGranCanaria,DepartamentodeIngenieriaMecanica,Spain摘要:在过去几年中快速成型技术及快速模具已被广泛开发利用.在本文中,使用电芯作为核心程序对塑料注射模具分析.通过差分系统快速成型制造外壳模型.主要目的是分析电铸镍壳力学特征、研究相关金相组织,硬度,内部压力等不同方面,由这些特征参数以生产电铸设备的外壳.最后一个核心是检验注塑模具.关键词:电镀;电铸;微观结构;镍引言现代工业遇到很大的挑战,其中最重要的是怎么样提供更好的产品给消费者,更多种类和更新换代问题.因此,现代工业必定产生更多的竞争性.毫无疑问,结合时间变量和质量变量并不容易,因为他们经常彼此互为条件;先进的生产系统将允许该组合以更加有效可行的方式进行,例如,如果是观测注塑系统的转变、我们得出的结论是,事实上一个新产品在市场上具有较好的质量它需要越来越少的时间快速模具制造技术是在这一领域,中可以改善设计和制造注入局部的技术进步.快速模具制造技术根本上是一个中小型系列的收集程序,在很短的时间内在可接受的精度水平根底上让我们获得模具的塑料部件。其应用不仅在更加广阔而且生产也不断增多。本文包括了很广泛的研究路线,在这些研究路线中我们可以尝试去学习,定义,分析,测试,提出在工业水平方面的可行性,从核心的注塑模具制造获取电铸镍壳,同时作为一个初始模型的原型在一个FDM设备上的快速成型。不得不说的是,先进的电铸技术应用在无数的行业,但这一研究工作调查到什么程度,并根据这些参数,使用这种技术生产快速模具在技术上是可行的.都产生一个准确的,系统化使用的方法以及建议的工作方法.2制造过程的注塑模具薄镍外壳的核心是电铸,获得一个充满epoxic金属树脂的一体化的核心板块模具(图1)允许直接制造注射型多用标本,因为它们确定了新英格兰大学英文国际表卓华组织3167标准。这样做的目的是确定力学性能的材料收集代表行业。该阶段取得的核心[4],根据这一方法研究了这项工作,有如下:a,用CAD系统设计的理想对象b模型制造的快速成型设备(频分多路系统).所用材料将是一个ABS塑料c一个制造的电铸镍壳,已事先涂有导电涂料(必须有导电).d无外壳模型e核心的生产是反面外壳环氧树脂的抗高温与具有制冷的铜管管道.有两个腔的注塑模具、其中一个是电核心和其他直接加工的移动版.因此,在同一工艺条件下,同时注入两个标准技术制造,获得相同的工作。获得电壳:设备电镀是电解质时电流的化学变化,电解所形成的直流电有两个电极,阳极和阴极。当电流流经电路,在离子溶液中转化为原子。电镀液用于这项工作是由氨基磺酸镍400毫升/升,氯化镍(10克/升)、硼酸(50克/升),allbriteSLA(30毫升/升),allbrite703(2毫升/升).选择这种组合主要原因是我们考虑注塑模具程序是玻璃纤维.氨基磺酸镍让我们获得可以接受的内部压力(测试不同工艺条件结果,而不是最正确工艺条件约2兆帕最高为50兆帕).不过,这种内部压力是由touenesulfonamode衍生物和甲醛水溶液使用的ALLbrite添加剂的结果。这种添加剂也增加了壳的阻力.Allbrite703是一种可生物降解水溶液表使用剂氯化镍,有利于解决金属统一分布在阴极,提高导电性的问题。硼酸作为PH值缓冲区。该设备用于制造壳的测试如下:●聚丙烯:600毫米×400毫米×500毫米的尺寸●三聚四氟乙烯电阻器,每一个有800W●具有机械搅拌系统的阴极●循环和过滤系统用的泵和聚丙烯过滤器。●充电整流器.最大强度在连续50个A和连续电流电压介于0至16伏●篮钛镍阳极(镍硫回合电解镍)纯度99%以上●气体注入系统一旦电流密度(1-22A/dm〕,温度(35至55℃)和pH值,已经确定,执行参数以及测试的进程局部不可改变。获得硬度电壳硬度的测试一直保持在相当高的很稳定的结果。如图2,可以看到:电流密度值2.5到22A/dm,硬度值介于540到580高压,PH值为4+-0.2和温度为45摄氏度,如果PH减少到3.5和温度为55摄氏度,硬度为520以上,高压低于560.这一测试使常规组成不同于其他氨基磺酸镍,允许其经营更加广泛,然而,这种operatyivity将是一定的取决于其他因素,如内部压力,因为他可能的变异。改变PH值,电流密度和温度等,另一方面,传统的硬度氨基磺酸镍承受的高压在200-250之间,远低于取得的一个实验结果的电压。对于一个注塑模具,硬度可以接受的起点300高压这是必须考虑的,注塑模具中最常见的材料,有改善钢〔290高压〕,整体淬火〔520-595高压〕,casehardened钢铁〔760-8--高压〕等,以这样一种方式,可以看到,注塑模具硬度水平的镍是壳内的高范围的材料。因为这是一个负责内部压力的塑料注射液,这种方式与环氧树脂灌浆将遵循它,相反对低韧性的壳补偿,这就是为什么它是必定尽可能的外壳厚度均匀,并没有重要的原因,如腐蚀。金相组织为了分析金相结构、电流密度、温度主要变化.在正面横向局部〔垂直沉积〕对样品进行了分析,为了方便地封装在树脂,抛光。铭刻,在不同阶段的混合乙酸和硝酸。该时刻间隔15,25,40,50之后再次抛光,为了在金相显微镜下观察奥林巴斯PME3-ADL3.3X/10X必须要说的是,这一条规定显示了图片之后的评论,用于制造该模型的壳在FDM快速成型机里融化的塑料材料〔澳大利亚统计局〕稳固和解决了该阶层。后来在每一个层,挤出的模具都留下一个大约0.15毫米直径横向和纵向的线程。因此,在外表可以看到细线外表头部的机器。这些西路将作为参考信息解决镍的重复性问题。重复性的模型将作为一个根本要素来评估注塑模具的外表纹理。表1测试系列:表1.检验系列系列pH温度(℃)电流密度A/mm214.2

±

0.2552.2223.9

±

0.2455.5634.0

±

0.24510.0044.0

±

0.24522.22图3说明该系列第一时刻外表的样本它显示了流道起点的频率复用机,这就是说,又一个很好的重复性。它不能仍然要注意四舍五入结构。在图4系列2,经过第二次,可以看到一条线的流道的方式与以前的相比不太清楚。在图5系列3虽然第二次时刻开始出现圆形晶结果是非常困难的。此外,最黑暗的局部说明时刻缺乏的进程和组成。这种现象说明,在低电流密度和高温条件下工作,得到更小的晶粒尺寸和壳重现性好,就是所需要的足够的应用程序。如果分析横向平面进行的沉积,可以在所有测试样品和条件增长的结构层〔图6〕,牺牲一个低延展性取得令人满意的高机械阻力,最重要的是添加剂的使用情况,氨基磺酸镍液的添加剂通常创立一个纤维和非层状结果[9].这个问题说明在任何情况下改变润湿剂,由于该层结构的决定因素是这种结构的应力减速器〔ALLbriteSLA)。另一方面,她也是测试的层状结构不同厚度中的电流密度.内部压力壳的一个主要特点是应该有其应用,如插入时要有一个低水平的内部压力。测试不同的温度很电流密度,所采取的措施取决于阴极弯曲张力计法。A钢测试控制使用侧固定和其他自由度固定〔160毫米长,12.7毫米宽,0.3毫米厚〕。金属沉积只有在控制了机械拉伸力〔拉深或压应力〕,才能计算内部压力。弹性的角度来看,斯托尼模型应用,假定镍基质厚度,对局部钢材产生足够小〔3微米〕的影响。在所有测试情况下,一个能够接受的应用程序在内部压力在50兆帕的极端条件下和2兆帕的最正确条件下产生。得出的结论是,内部压力在不同的工作条件和参数没有明显的变化条件下。7校验注塑模具试验已进行了各种代表性热塑性材料如聚丙烯、高密度聚乙烯和PC、并进行了注射部件性能的分析,如尺寸,重量,阻力,刚度和柔性。对壳的力学性能进行了拉伸破坏性测试和分析。大约500个注射液在其余的条件下,进行了更多的检验总体而言,为分析一种材料,重要的是注意到行为标本中的核心和那些加工腔之间的差异。然而在分析光弹注入标本〔图7〕有人注意到不同的国家之间张力存在两种不同的类型的标本,是由于不同的模腔热传递和刚度。这种差异解释了柔性的变化更加突出的局部晶体材料,如聚乙烯和聚酰胺6.有人注意到一个较低的柔性标本在的高密度聚乙烯分析测试管在镍核心的情况下,量化30%左右。如尼龙6这个值也接近50%。

8结论经过连续的测试,注塑模具在不同条件下检查的氨基磺酸镍液使用添加剂。这就是说塑性好,硬度好和摩擦力好的层状结构,已取得的力学性能是可以接受的。借鞋缺陷的镍壳将局部取代环氧树脂为核心的注塑模具,使注入的一系列中型塑料零部件到达可接受的质量的水平。参考资料[1]A.E.W.Rennie,C.E.BockingandG.R.Bennet,Electroformingofrapidprototypingmandrelsforelectrodischargemachiningelectrodes,J.Mater.Process.Technol.110(2001),pp.186–196.[2]P.K.D.V.Yarlagadda,I.P.IlyasandP.Chrstodoulou,Developmentofrapidtoolingforsheetmetaldrawingusingnickelelectroformingandstereolithographyprocesses,J.Mater.Process.Technol.111(2001),pp.286–294.[3]J.Hart,A.Watson,Electroforming:Alargelyunrecognisedbutexpandingvitalindustry,Interfinish96,14WorldCongress,Birmingham,UK,1996.[4]M.Monzónetal.,Aplicacióndelelectroconformadoenlafabricaciónrápidademoldesdeinyección,RevistadePlásticosModernos.84(2002),p.557.[5]L.F.Hamiltonetal.,CálculosdeQuímicaAnalítica,McGrawHill(1989).[6]E.Julve,Electrodeposicióndemetales,2000(E.J.S.).[7]A.Watson,NickelSulphamateSolutions,NickelDevelopmentInstitute(1989).[8]A.Watson,AdditionstoSulphamateNickelSolutions,NickelDevelopmentInstitute(1989).[9]J.Dini,ElectrodepositionMaterialsScienceofCoatingandSubstrates,NoyesPublications(1993).[10]J.W.Judy,Magneticmicroactuatorswithpolysiliconflexures,MastersReport,DepartmentofEECS,UniversityofCalifornia,Berkeley,1994.(cap′.3).Atechnicalnoteonthecharacterizationofelectroformednickelshellsfortheirapplicationtoinjectionmolds——aUniversidaddeLasPalmasdeGranCanaria,DepartamentodeIngenieriaMecanica,Spain

AbstractThetechniquesofrapidprototypingandrapidtoolinghavebeenwidelydevelopedduringthelastyears.Inthisarticle,electroformingasaproceduretomakecoresforplasticsinjectionmoldsisanalysed.ShellsareobtainedfrommodelsmanufacturedthroughrapidprototypingusingtheFDMsystem.Themainobjectiveistoanalyzethemechanicalfeaturesofelectroformednickelshells,studyingdifferentaspectsrelatedtotheirmetallographicstructure,hardness,internalstressesandpossiblefailures,byrelatingthesefeaturestotheparametersofproductionoftheshellswithanelectroformingequipment.Finallyacorewastestedinaninjectionmold.Keywords:Electroplating;Electroforming;Microstructure;Nickel

1.IntroductionOneofthemostimportantchallengeswithwhichmodernindustrycomesacrossistooffertheconsumerbetterproductswithoutstandingvarietyandtimevariability(newdesigns).Forthisreason,modernindustrymustbemoreandmorecompetitiveandithastoproducewithacceptablecosts.Thereisnodoubtthatcombiningthetimevariableandthequalityvariableisnoteasybecausetheyfrequentlyconditiononeanother;thetechnologicaladvancesintheproductivesystemsaregoingtopermitthatcombinationtobemoreefficientandfeasibleinawaythat,forexample,ifitisobservedtheevolutionofthesystemsandtechniquesofplasticsinjection,wearriveattheconclusionthat,infact,ittakeslessandlesstimetoputanewproductonthemarketandwithhigherlevelsofquality.Themanufacturingtechnologyofrapidtoolingis,inthisfield,oneofthosetechnologicaladvancesthatmakespossibletheimprovementsintheprocessesofdesigningandmanufacturinginjectedparts.Rapidtoolingtechniquesarebasicallycomposedofacollectionofproceduresthataregoingtoallowustoobtainamoldofplasticparts,insmallormediumseries,inashortperiodoftimeandwithacceptableaccuracylevels.Theirapplicationisnotonlyincludedinthefieldofmakingplasticinjectedpieces[1],[2]and[3],however,itistruethatitiswheretheyhavedevelopedmoreandwheretheyfindthehighestoutput.Thispaperisincludedwithinawiderresearchlinewhereitattemptstostudy,define,analyze,testandpropose,atanindustriallevel,thepossibilityofcreatingcoresforinjectionmoldsstartingfromobtainingelectroformednickelshells,takingasaninitialmodelaprototypemadeinaFDMrapidprototypingequipment.Italsowouldhavetosaybeforehandthattheelectroformingtechniqueisnotsomethingnewbecauseitsapplicationsintheindustryarecountless[3],butthisresearchworkhastriedtoinvestigatetowhatextentandunderwhichparameterstheuseofthistechniqueintheproductionofrapidmoldsistechnicallyfeasible.Allmadeinanaccurateandsystematizedwayofuseandproposingaworkingmethod.2.ManufacturingprocessofaninjectionmoldThecoreisformedbyathinnickelshellthatisobtainedthroughtheelectroformingprocess,andthatisfilledwithanepoxicresinwithmetallicchargeduringtheintegrationinthecoreplate[4]Thismold(Fig.1)permitsthedirectmanufacturingbyinjectionofatypeamultipleusespecimen,astheyaredefinedbytheUNE-ENISO3167standard.Thepurposeofthisspecimenistodeterminethemechanicalpropertiesofacollectionofmaterialsrepresentativeindustry,injectedinthesetoolsanditscoMParisonwiththepropertiesobtainedbyconventionaltools.Fig.1.

Manufacturedinjectionmoldwithelectroformedcore.Thestagestoobtainacore[4],accordingtothemethodologyresearchedinthiswork,arethefollowing:(a)DesigninCADsystemofthedesiredobject.(b)Modelmanufacturinginarapidprototypingequipment(FDMsystem).ThematerialusedwillbeanABSplastic.(c)Manufacturingofanickelelectroformedshellstartingfromthepreviousmodelthathasbeencoatedwithaconductivepaintbeforehand(itmusthaveelectricalconductivity).(d)Removaloftheshellfromthemodel.(e)Productionofthecorebyfillingthebackoftheshellwithepoxyresinresistanttohightemperaturesandwiththerefrigeratingductsmadewithcoppertubes.Theinjectionmoldhadtwocavities,oneofthemwastheelectroformedcoreandtheotherwasdirectlymachinedinthemovingplaten.Thus,itwasobtained,withthesametoolandinthesameprocessconditions,toinjectsimultaneouslytwospecimensincavitiesmanufacturedwithdifferenttechnologies.3.Obtaininganelectroformedshell:theequipmentElectrodeposition[5]and[6]isanelectrochemicalprocessinwhichachemicalchangehasitsoriginwithinanelectrolytewhenpassinganelectriccurrentthroughit.Theelectrolyticbathisformedbymetalsaltswithtwosubmergedelectrodes,ananode(nickel)andacathode(model),throughwhichitismadetopassanintensitycomingfromaDCcurrent.Whenthecurrentflowsthroughthecircuit,themetalionspresentinthesolutionaretransformedintoatomsthataresettledonthecathodecreatingamoreorlessuniformdepositlayer.Theplatingbathusedinthisworkisformedbynickelsulfamate[7]and[8]ataconcentrationof400

ml/l,nickelchloride(10

g/l),boricacid(50

g/l),AllbriteSLA(30

cc/l)andAllbrite703(2

cc/l).Theselectionofthiscompositionismainlyduetothetypeofapplicationweintend,thatistosay,injectionmolds,evenwhentheinjectionismadewithfibreglass.Nickelsulfamateallowsustoobtainanacceptablelevelofinternalstressesintheshell(thetestsgaveresults,fordifferentprocessconditions,notsuperiorto50

MPaandforoptimumconditionsaround2

MPa).Nevertheless,suchlevelofinternalpressureisalsoaconsequenceofusingasanadditiveAllbriteSLA,whichisastressreducerconstitutedbyderivativesoftoluenesulfonamideandbyformaldehydeinaqueoussolution.Suchadditivealsofavourstheincreaseoftheresistanceoftheshellwhenpermittingasmallergrain.Allbrite703isanaqueoussolutionofbiodegradablesurface-actingagentsthathasbeenutilizedtoreducetheriskofpitting.Nickelchloride,inspiteofbeingharmfulfortheinternalstresses,isaddedtoenhancetheconductivityofthesolutionandtofavourtheuniformityinthemetallicdistributioninthecathode.TheboricacidactsasapHbuffer.Theequipmentusedtomanufacturethenickelshellstestedhasbeenasfollows:•Polypropylenetank:600

mm

×

400

mm

×

500

mminsize.•Threeteflonresistors,eachonewith800

W.•Mechanicalstirringsystemofthecathode.•Systemforrecirculationandfiltrationofthebathformedbyapumpandapolypropylenefilter.•Chargingrectifier.Maximumintensityincontinuous50

Aandcontinuouscurrentvoltagebetween0and16

V.•Titaniumbasketwithnickelanodes(IncoS-RoundsElectrolyticNickel)withapurityof99%.•Gasesaspirationsystem.Oncethebathhasbeendefined,theoperativeparametersthathavebeenalteredfortestingdifferentconditionsoftheprocesshavebeenthecurrentdensity(between1and22

A/dm2),thetemperature(between35and55

°C)andthepH,partiallymodifyingthebathcomposition.4.ObtainedhardnessOneofthemostinterestingconclusionsobtainedduringthetestshasbeenthatthelevelofhardnessofthedifferentelectroformedshellshasremainedatratherhighandstablevalues.InFig.2,itcanbeobservedthewayinwhichforcurrentdensityvaluesbetween2.5and22

A/dm2,thehardnessvaluesrangefrom540and580

HV,atpH4

±

0.2andwithatemperatureof45

°C.IfthepHofthebathisreducedat3.5andthetemperatureis55

°Cthosevaluesareabove520

HVandbelow560

HV.Thisfeaturemakesthetestedbathdifferentfromotherconventionalonescomposedbynickelsulfamate,allowingtooperatewithawiderrangeofvalues;nevertheless,suchoperativitywillbelimiteddependingonotherfactors,suchasinternalstressbecauseitsvariabilitymayconditiontheworkatcertainvaluesofpH,currentdensityortemperature.Ontheotherhand,thehardnessofaconventionalsulfamatebathisbetween200–250

HV,muchlowerthantheoneobtainedinthetests.Itisnecessarytotakeintoaccountthat,foraninjectionmold,thehardnessisacceptablestartingfrom300

HV.Amongthemostusualmaterialsforinjectionmoldsitispossibletofindsteelforimprovement(290

HV),steelforintegralhardening(520–595

HV),casehardenedsteel(760–800

HV),etc.,insuchawaythatitcanbeobservedthatthehardnesslevelsofthenickelshellswouldbewithinthemedium–highrangeofthematerialsforinjectionmolds.Theobjectiontothelowductilityoftheshelliscompensatedinsuchawaywiththeepoxyresinfillingthatwouldfollowitbecausethisistheoneresponsibleforholdinginwardlythepressurechargesoftheprocessesofplasticsinjection;thisisthereasonwhyitisnecessaryfortheshelltohaveathicknessashomogeneousaspossible(aboveaminimumvalue)andwithabsenceofimportantfailuressuchaspitting.Fig.2.

Hardnessvariationwithcurrentdensity.pH4

±

0.2,T

=

45

°C.5.MetallographicstructureInordertoanalyzethemetallographicstructure,thevaluesofcurrentdensityandtemperatureweremainlymodified.Thesampleswereanalyzedinfrontalsectionandintransversalsection(perpendiculartothedeposition).Forachievingaconvenientpreparation,theywereconvenientlyencapsulatedinresin,polishedandetchedindifferentstageswithamixtureofaceticacidandnitricacid.Theetchesarecarriedoutatintervalsof15,25,40and50

s,afterbeingpolishedagain,inordertobeobservedafterwardsinametallographicmicroscopeOlympusPME3-ADL3.3×/10×.Beforegoingontocommentthephotographsshowninthisarticle,itisnecessarytosaythatthemodelsusedtomanufacturetheshellsweremadeinaFDMrapidprototypingmachinewherethemoltenplasticmaterial(ABS),thatlatersolidifies,issettledlayerbylayer.Ineachlayer,theextruderdieleavesathreadapproximately0.15

mmindiameterwhichiscompactedhorizontalandverticallywiththethreadsettledinmediatelyafter.Thus,inthesurfaceitcanbeobservedthinlinesthatindicatetheroadsfollowedbytheheadofthemachine.Theselinesaregoingtoactasareferencetoindicatethereproducibilitylevelofthenickelsettled.Thereproducibilityofthemodelisgoingtobeafundamentalelementtoevaluateabasicaspectofinjectionmolds:thesurfacetexture.ThetestedseriesareindicatedinTable1.Table1.TestedseriesSeriespHTemperature(°C)Currentdensity(A/dm2)14.2

±

0.2552.2223.9

±

0.2455.5634.0

±

0.24510.0044.0

±

0.24522.22Fig.3illustratesthesurfaceofasampleoftheseriesafterthefirstetch.ItshowstheroadsoriginatedbytheFDMmachine,thatistosaythatthereisagoodreproducibility.Itcannotbestillnoticedtheroundedgrainstructure.InFig.4,series2,afterasecondetch,itcanbeobservedalineoftheroadinawaylessclearthaninthepreviouscase.InFig.5,series3and2°etchitbeginstoappeartheroundedgrainstructurealthoughitisverydifficulttochecktheroadsatthistime.Besides,themostdarkenedareasindicatethepresenceofpittingbyinadequateconditionsofprocessandbathcomposition.Fig.3.

Series1(×150),etch1.Fig.4.

Series2(×300),etch2.Fig.5.

Series3(×300),etch2.Thisbehaviorindicatesthat,workingatalowcurrentdensityandahightemperature,shellswithagoodreproducibilityofthemodelandwithasmallgrainsizeareobtained,thatis,adequatefortherequiredapplication.Iftheanalysisiscarriedoutinaplanetransversaltothedeposition,itcanbetestedinallthesamplesandforalltheconditionsthatthegrowthstructureofthedepositislaminar(Fig.6),whatisverysatisfactorytoobtainahighmechanicalresistancealthoughattheexpenseofalowductibility.Thisqualityisdue,aboveall,tothepresenceoftheadditivesusedbecauseanickelsulfamatebathwithoutadditivesnormallycreatesafibrousandnon-laminarstructure[9].Themodificationuntilanearlynullvalueofthewettingagentgaveasaresultthatthelaminarstructurewasmaintainedinanycase,thatmatterdemonstratedthatthedeterminantforsuchstructurewasthestressreducer(AllbriteSLA).Ontheotherhand,itwasalsotestedthatthelaminarstructurevariesaccordingtothethicknessofthelayerintermsofthecurrentdensity.Fig.6.

Planetransversalofseries2(×600),etch2.6.InternalstressesOneofthemaincharacteristicthatashellshouldhaveforitsapplicationlikeaninsertistohavealowlevelofinternalstresses.Differenttestsatdifferentbathtemperaturesandcurrentdensitiesweredoneandameasuresystemrestedoncathodeflexuraltensiometermethodwasused.Asteeltestingcontrolwasusedwithasidefixedandtheotherfree(160

mmlength,12.7

mmwidthandthickness0.3

mm).Becausethemetallicdepositionisonlyinonesidethetestingcontrolhasamechanicalstrain(tensileorcompressivestress)thatallowstocalculatetheinternalstresses.Stoneymodel[10]wasappliedandwassupposedthatnickelsubstratumthicknessisenoughsmall(3

μm)toinfluence,inanelasticpointofview,tothestrainedsteelpart.Inallthetestedcasesthemostvalueofinternalstresswasunder50

MPaforextremeconditionsand2

MPaforoptimalconditions,anacceptablevaluefortherequiredapplication.Theconclusionisthattheelectroliticbathallowstoworkatdifferentconditionsandparameterswithoutasignificantvariationofinternalstresses.7.TestoftheinjectionmoldTestshavebeencarriedoutwithvariousrepresentativethermoplasticmaterialssuchasPP,PA,HDPEandPC,andithasbeenanalysedthepropertiesoftheinjectedpartssuchasdimensions,weight,resistance,rigidityandductility.Mechanicalpropertiesweretestedbytensiledestructivetestsandanalysisbyphotoelasticity.About500injectionswerecarriedoutonthiscore,remainingunderconditionsofwithstandingmanymore.Ingeneralterms,importantdifferenceswerenotnoticedbetweenthebehaviorofthespecimensobtainedinthecoreandtheonesfromthemachinedcavity,forthesetoftheanalysedmaterials.Howeverintheanalysisbyphotoelasticiy(Fig.7)itwasnoticedadifferenttensionalstatebetweenbothtypesofspecimens,basicallyduetodifferencesintheheattransferenceandrigidityoftherespectivemoldcavities.Thisdifferenceexplainstheductilityvariationsmoreoutstandinginthepartiallycrystallinematerials

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论