版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
5/5一元二次方程知识点一、一元二次方程1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。2、一元二次方程的一般形式:,它的特征是:等式左边加一个关于未知数x的二次多项式,等式右边是零,其中叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。二、一元二次方程的解法1、直接开平方法:利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。直接开平方法适用于解形如的一元二次方程。根据平方根的定义可知,是b的平方根,当时,,,当b<0时,方程没有实数根。2、配方法:配方法的理论根据是完全平方公式,把公式中的a看做未知数x,并用x代替,则有。配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式3、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。一元二次方程的求根公式:公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c4、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式5、韦达定理利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和,二根之积。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用三、一元二次方程根的判别式根的判别式一元二次方程中,叫做一元二次方程的根的判别式,通常用“”来表示,即当△>0时,一元二次方程有2个不相等的实数根;当△=0时,一元二次方程有2个相同的实数根;III.当△<0时,一元二次方程没有实数根四、一元二次方程根与系数的关系如果方程的两个实数根是,那么,。也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。五、一元二次方程的应用1.构建一元二次方程数学模型,常见的模型如下:⑴与几何图形有关的应用:如几何图形面积模型、勾股定理等;⑵有关增长率的应用:此类问题是在某个数据的基础上连续增长(降低)两次得到新数据,常见的等量关系是a(1±x)2=b,其中a表示增长(降低)前的数据,x表示增长率(降低率),b表示后来的数据。注意:所得解中,增长率不为负,降低率不超过1。⑶经济利润问题:总利润=(单件销售额-单件成本)×销售数量;或者,总利润=总销售额-总成本。⑷动点问题:此类问题是一般几何问题的延伸,根据条件设出未知数后,要想办法把图中变化的线段用未知数表示出来,再根据题目中的等量关系列出方程。2.注重解法的选择与验根:在具体问题中要注意恰当的选择解法,以保证解题过程简洁流畅,特别要对方程的解注意检验,根据实际做出正确取舍,以保证结论的准确性.一元二次方程练习一、选择题1、若关于x的一元二次方程(m-1)x2+5x+m2-3m+2=0有一个根为0,则m的值等于()A.1B.2C.1或2D.02、巴中日报讯:今年我市小春粮油再获丰收,全市产量预计由前年的45万吨提升到50万吨,设从前年到今年我市的粮油产量年平均增长率为,则可列方程为()A. B.C. D.3、已知是关于的一元二次方程的两实数根,则的值是()A. B. C. D.4、已知a、b、c分别是三角形的三边,则(a+b)x2+2cx+(a+b)=0的根的情况是()A.没有实数根 B.可能有且只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根5、已知是方程的两根,且,则的值等于()A.-5B.5C.-9D.96、已知方程有一个根是,则下列代数式的值恒为常数的是()A.B.C.D.7、的估计正确的是() A. B. C. D.8、关于的一元二次方程的两个实数根分别是,且,则的值是()A.1 B.12 C.13 D.259、某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张表示留念,全班共送了2450张相片,如果全班有x名学生,根据题意,列出方程为() A.B.C.D.10、设是方程的两个实数根,则的值为()A.2006 B.2007 C.2008 D.200911、对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若a+c=0,方程ax2+bx+c=0必有实数根;②若b+4ac<0,则方程ax2+bx+c=0一定有实数根;③若a-b+c=0,则方程ax2+bx+c=0一定有两个不等实数根;④若方程ax+bx+c=0有两个实数根,则方程cx+bx+a=0一定有两个实数根.其中正确的是()A.①②B.①③C.②③D.①③④二、填空题1、若一元二次方程x-(a+2)x+2a=0的两个实数根分别是3、b,则a+b=.3、方程(x﹣1)(x+2)=2(x+2)的根是.4、关于x的一元二次方程ax+bx+1=0(a0)有两个相等实根,求的值为_______.5、在等腰△ABC中,三边分别为a,b,c,其中a=5,若关于x的方程x+(b+2)x+6-b=0有两个相等的实数根,则△ABC的周长为__________.6、已知关于的一元二次方程x-6x-k=0(k为常数).设x,x为方程的两个实数根,且x+2x=14,则k的值为__________.7、已知m、n是方程x-2003x+2004=0的两根,则(n-2004n+2005)与(m-2004m+2005)的积是.三、解方程①②2(x-1)+5(x-l)+2=0③x-2x-2=0④x+5x+3=0四、计算题1、关于x的方程有两个不相等的实数根.(1)求k的取值范围。(2)是否存在实数k,使方程的两个实数根的倒数和等于0?若存在,求出k的值;若不存在,说明理由2.小红的妈妈前年存了5000元一年期的定期储蓄,到期后自动转存。今年到期扣除利息税(利息税为利息的20%),共取得5760元.求这种储蓄的年利率.3.如图12-3,△ABC中,∠B=90°,点P从A点开始沿AB向点B以1cm/s的速度移动,点Q从B点开始沿BC边向C点以2cm/s的速度移动。(1)如果P、Q分别从A、B同时出发,经几秒钟,使△ABQ的面积等于8cm2?(2)如果P、Q分别从A、B同时出发,并且P到B后又继续在BC边上前进,Q以C后又继续在AC边上前进,经几秒钟,使△PCQ的面积等于12.6cm2。4、为了开阔学生视野,某校组织学生从学校出发,步行6千米到科技展览馆参观。返回时比去时每小时少走1千米,结果返回时比去时多用了半小时。求学生返回时步行的速度。5、某商店以2400元购进某种盒装茶叶,第一个月每盒按进价增加20%作为售价,售出50盒,第二个月每盒以低于进价5元作为售价,售完余下的茶叶.在整个买卖过程中盈利350元,求每盒茶叶的进价.6、某公司需在一个月(31天)内完成新建办公楼的装修工程.如果由甲、乙两个工程队合做,12天可完成;如
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年新型城镇化项目宣传策划与广告制作合同3篇
- 二零二五年度数字经济产业园运营管理合同3篇
- 二零二五年酒店客房服务质量监督单位合同范本3篇
- 二零二五年度电梯设备采购与安装一体化服务合同3篇
- 二零二五年路灯照明产品研发、生产、销售及售后服务合同5篇
- 二零二五年高端房地产抵押租赁合同模板3篇
- 二零二五版体育产业贷款合同与信用额度授信协议3篇
- 二零二五版昆明公租房电子合同租赁合同解除与终止流程3篇
- 二零二五年度简单终止劳动合同协议规范劳动合同解除2篇
- 2025年彩钢建筑一体化解决方案承包合同3篇
- NGS二代测序培训
- 《材料合成与制备技术》课程教学大纲(材料化学专业)
- 小红书食用农产品承诺书示例
- 钉钉OA办公系统操作流程培训
- 新生儿科年度护理质控总结
- GB/T 15934-2024电器附件电线组件和互连电线组件
- 《工贸企业有限空间作业安全规定》知识培训
- 高层次人才座谈会发言稿
- 垃圾清运公司管理制度(人员、车辆、质量监督、会计管理制度)
- 《建筑工程设计文件编制深度规定》(2022年版)
- 营销人员薪酬考核方案
评论
0/150
提交评论