![涡喷发动机介绍_第1页](http://file4.renrendoc.com/view/c2beda6534346f2f7e3dc10965e425bf/c2beda6534346f2f7e3dc10965e425bf1.gif)
![涡喷发动机介绍_第2页](http://file4.renrendoc.com/view/c2beda6534346f2f7e3dc10965e425bf/c2beda6534346f2f7e3dc10965e425bf2.gif)
![涡喷发动机介绍_第3页](http://file4.renrendoc.com/view/c2beda6534346f2f7e3dc10965e425bf/c2beda6534346f2f7e3dc10965e425bf3.gif)
![涡喷发动机介绍_第4页](http://file4.renrendoc.com/view/c2beda6534346f2f7e3dc10965e425bf/c2beda6534346f2f7e3dc10965e425bf4.gif)
![涡喷发动机介绍_第5页](http://file4.renrendoc.com/view/c2beda6534346f2f7e3dc10965e425bf/c2beda6534346f2f7e3dc10965e425bf5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
飞行原理(HowAndWhy)升力原理:飞机是比空气重的飞行器,因此需要消耗自身动力来获得升力。而升力的来源是飞行中空气对机翼的作用。在下面这幅图里,有一个机翼的剖面示意图。机翼的上表面是弯曲的,下表面是平坦的,因此在机翼与空气相对运动时,流过上表面的空气在同一时间(T)内走过的路程(S1)比流过下表面的空气的路程(S2)远,所以在上表面的空气的相对速度比下表面的空气快(V1=S1/T>V2=S2/T1)。根据帕奴利定理——“流体对周围的物质产生的压力与流体的相对速度成反比。”,因此上表面的空气施加给机翼的压力F1小于下表面的F2。F1、F2的合力必然向上,这就产生了升力。
从机翼的原理,我们也就可以理解螺旋桨的工作原理。螺旋桨就好像一个竖放的机翼,凸起面向前,平滑面向后。旋转时压力的合力向前,推动螺旋桨向前,从而带动飞机向前。当然螺旋桨并不是简单的凸起平滑,而有着复杂的曲面结构。老式螺旋桨是固定的外形,而后期设计则采用了可以改变的相对角度等设计,改善螺旋桨性能。飞行需要动力,使飞机前进,更重要的是使飞机获得升力。早期飞机通常使用活塞发动机作为动力,又以四冲程活塞发动机为主。这类发动机的原理如图,主要为吸入空气,与燃油混合后点燃膨胀,驱动活塞往复运动,再转化为驱动轴的旋转输出:单单一个活塞发动机发出的功率非常有限,因此人们将多个活塞发动机并联在一起,组成星型或V型活塞发动机。下图为典型的星型活塞发动机。现代高速飞机多数使用喷气式发动机,原理是将空气吸入,与燃油混合,点火,爆炸膨胀后的空气向后喷出,其反作用力则推动飞机向前。下图的发动机剖面图里,一个个压气风扇从进气口中吸入空气,并且一级一级的压缩空气,使空气更好的参与燃烧。风扇后面橙红色的空腔是燃烧室,空气和油料的混和气体在这里被点燃,燃烧膨胀向后喷出,推动最后两个风扇旋转,最后排出发动机外。而最后两个风扇和前面的压气风扇安装在同一条中轴上,因此会带动压气风扇继续吸入空气,从而完成了一个工作循环涡轮喷气发动机这类发动机的原理基本与上面提到的喷气原理相同,具有加速快、设计简便等优点。但如果要让涡喷发动机提高推力,则必须增加燃气在涡轮前的温度和增压比,这将会使排气速度增加而损失更多动能,于是产生了提高推力和降低油耗的矛盾。因此涡喷发动机油耗大,对于商业民航机来说是个致命弱点。涡轮喷气发动机的诞生二战以前,活塞发动机与螺旋桨的组合已经取得了极大的成就,使得人类获得了挑战天空的能力。但到了三十年代末,航空技术的发展使得这一组合达到了极限。螺旋桨在飞行速度达到800千米/小时的时候,桨尖部分实际上已接近了音速,跨音速流场使得螺旋桨的效率急剧下降,推力不增反减。螺旋桨的迎风面积大,阻力也大,极大阻碍了飞行速度的提高。同时随着飞行高度提高,大气稀薄,活塞式发动机的功率也会减小。这促生了全新的喷气发动机推进体系。喷气发动机吸入大量的空气,燃烧后高速喷出,对发动机产生反作用力,推动飞机向前飞行。早在1913年,法国工程师雷恩·洛兰就提出了冲压喷气发动机的设计,并获得专利。但当时没有相应的助推手段和相应材料,喷气推进只是一个空想。1930年,英国人弗兰克·惠特尔获得了燃气涡轮发动机专利,这是第一个具有实用性的喷气发动机设计。11年后他设计的发动机首次飞行,从而成为了涡轮喷气发动机的鼻祖。涡轮喷气发动机的原理涡轮喷气发动机简称涡喷发动机,通常由进气道、压气机、燃烧室、涡轮和尾喷管组成。部分军用发动机的涡轮和尾喷管间还有加力燃烧室。涡喷发动机属于热机,做功原则同样为:高压下输入能量,低压下释放能量。工作时,发动机首先从进气道吸入空气。这一过程并不是简单的开个进气道即可,由于飞行速度是变化的,而压气机对进气速度有严格要求,因而进气道必需可以将进气速度控制在合适的范围。压气机顾名思义,用于提高吸入的空气的的压力。压气机主要为扇叶形式,叶片转动对气流做功,使气流的压力、温度升高。随后高压气流进入燃烧室。燃烧室的燃油喷嘴射出油料,与空气混合后点火,产生高温高压燃气,向后排出。高温高压燃气向后流过高温涡轮,部分内能在涡轮中膨胀转化为机械能,驱动涡轮旋转。由于高温涡轮同压气机装在同一条轴上,因此也驱动压气机旋转,从而反复的压缩吸入的空气。从高温涡轮中流出的高温高压燃气,在尾喷管中继续膨胀,以高速从尾部喷口向后排出。这一速度比气流进入发动机的速度大得多,从而产生了对发动机的反作用推力,驱使飞机向前飞行。涡轮喷气发动机的优缺点这类发动机具有加速快、设计简便等优点,是较早实用化的喷气发动机类型。但如果要让涡喷发动机提高推力,则必须增加燃气在涡轮前的温度和增压比,这将会使排气速度增加而损失更多动能,于是产生了提高推力和降低油耗的矛盾。因此涡喷发动机油耗大,对于商业民航机来说是个致命弱点。涡轮风扇发动机涡轮风扇发动机吸入的空气一部分从外部管道(外涵道)后吹,一部分送入内涵道核心机(相当于一个纯涡喷发动机)。最前端的“风扇”作用类似螺旋桨,通过降低排气速度达到提高喷气发动机推进效率的目的。同时通过精确设计,使更多的燃气能量经风扇传递到外涵道,同样解决了排气速度过快的问题,从而降低了发动机的油耗。由于该风扇设计要兼顾内外涵道的需要,因此难度远大于涡喷发动机。涡轮风扇喷气发动机的诞生二战后,随着时间推移、技术更新,涡轮喷气发动机显得不足以满足新型飞机的动力需求。尤其是二战后快速发展的亚音速民航飞机和大型运输机,飞行速度要求达到高亚音速即可,耗油量要小,因此发动机效率要很高。涡轮喷气发动机的效率已经无法满足这种需求,使得上述机种的航程缩短。因此一段时期内出现了较多的使用涡轮螺旋桨发动机的大型飞机。实际上早在30年代起,带有外涵道的喷气发动机已经出现了一些粗糙的早期设计。40和50年代,早期涡扇发动机开始了试验。但由于对风扇叶片设计制造的要求非常高。因此直到60年代,人们才得以制造出符合涡扇发动机要求的风扇叶片,从而揭开了涡扇发动机实用化的阶段。50年代,美国的NACA(即NASA美国航空航天管理局的前身)对涡扇发动机进行了非常重要的科研工作。55到56年研究成果转由通用电气公司(GE)继续深入发展。GE在1957年成功推出了CJ805-23型涡扇发动机,立即打破了超音速喷气发动机的大量纪录。但最早的实用化的涡扇发动机则是普拉特·惠特尼(Pratt&Whitney)公司的JT3D涡扇发动机。实际上普·惠公司启动涡扇研制项目要比GE晚,他们是在探听到GE在研制CJ805的机密后,匆忙加紧工作,抢先推出了了实用的JT3D。1960年,罗尔斯·罗伊斯公司的“康威”(Conway)涡扇发动机开始被波音707大型远程喷气客机采用,成为第一种被民航客机使用的涡扇发动机。60年代洛克西德“三星”客机和波音747“珍宝”客机采用了罗·罗公司的RB211-22B大型涡扇发动机,标志着涡扇发动机的全面成熟。此后涡轮喷气发动机迅速的被西方民用航空工业抛弃。波音707的军用型号之一,KC-135加油机。不加力式涡扇发动机实际上较为容易辨认,其外部有一直径很大的风扇外壳。涡轮风扇喷气发动机的原理涡桨发动机的推力有限,同时影响飞机提高飞行速度。因此必需提高喷气发动机的效率。发动机的效率包括热效率和推进效率两个部分。提高燃气在涡轮前的温度和压气机的增压比,就可以提高热效率。因为高温、高密度的气体包含的能量要大。但是,在飞行速度不变的条件下,提高涡轮前温度,自然会使排气速度加大。而流速快的气体在排出时动能损失大。因此,片面的加大热功率,即加大涡轮前温度,会导致推进效率的下降。要全面提高发动机效率,必需解决热效率和推进效率这一对矛盾。涡轮风扇发动机的妙处,就在于既提高涡轮前温度,又不增加排气速度。涡扇发动机的结构,实际上就是涡轮喷气发动机的前方再增加了几级涡轮,这些涡轮带动一定数量的风扇。风扇吸入的气流一部分如普通喷气发动机一样,送进压气机(术语称“内涵道”),另一部分则直接从涡喷发动机壳外围向外排出(“外涵道”)。因此,涡扇发动机的燃气能量被分派到了风扇和燃烧室分别产生的两种排气气流上。这时,为提高热效率而提高涡轮前温度,可以通过适当的涡轮结构和增大风扇直径,使更多的燃气能量经风扇传递到外涵道,从而避免大幅增加排气速度。这样,热效率和推进效率取得了平衡,发动机的效率得到极大提高。效率高就意味着油耗低,飞机航程变得更远。加力式涡扇发动机非加力式涡扇发动机冲压喷气发动机此类发动机没有风扇等器件,完全靠高速飞行时产生的冲压效应压缩吸入的空气,点火、燃烧、后喷等原理。因此其优点为结构简单、体积小、推力大、加速快。缺点是需要外部能源进行启动(通常为火箭助推),不适合循环使用。冲压喷气发动机的诞生早在1913年,法国工程师雷恩·洛兰就提出了冲压喷气发动机的设计,并获得专利。但当时没有相应的助推手段和相应材料,只停留在纸面上。1928年,德国人保罗·施米特开始设计冲压式喷气发动机。最初研制出的冲压发动机寿命短、振动大,根本无法在载人飞机上使用。于是1934年时,施米特和G·马德林提出了以冲压发动机为动力的“飞行炸弹”,于1939年完成了原型。后来这一设计就产生了纳粹德国的V-1巡航导弹。此外纳粹德国还曾试图将冲压喷气发动机用在战斗机上。1941年,特劳恩飞机实验所主任、物理学家欧根·森格尔博士在吕内堡野外进行了该类型发动机的试验,但最终未能产生具有实用意义的发动机型号。二战后冲压发动机得到了极大的发展,为多种的无人机、导弹等采用。冲压喷气发动机的原理冲压喷气发动机的核心在于“冲压”两字。冲压发动机由进气道(也称扩压器)、燃烧室、推进喷管三部组成,比涡轮喷气发动机简单得多。冲压是利用迎面气流进入发动机后减速、提高静压的过程。这一过程不需要高速旋转的复杂的压气机,是冲压喷气发动机最大的优势所在。进气速度为3倍音速时,理论上可使空气压力提高37倍,效率很高。高速气流经扩张减速,气压和温度升高后,进入燃烧室与燃油混合燃烧。燃烧后温度为2000一2200℃冲压喷气发动机目前分为亚音速、超音速、高超音速三类。亚音速冲压发动机以航空煤油为燃料,采用扩散形进气道和收敛形喷管,飞行时增压比不超过1.89。马赫数小于O.5时一般无法工作。超音速冲压发动机采用超音速进气道,燃烧室入口为亚音速气流,采用收敛形或收敛扩散形喷管。用航空煤油或烃类作为燃料。推进速度为亚音速~6倍音速,用于超音速靶机和地对空导弹。高超音速冲压发动机使用碳氢燃料或液氢燃料,是一种新颖的发动机,飞行马赫数高达5~16。目前尚处于研制阶段。前两类发动机统称为亚音速冲压发动机,最后一种称为超音速冲压发动机。冲压喷气发动机与其他推进方式结合后,衍生了多种有特色的发动机,如火箭/冲压组合发动机、整体式火箭冲压发动机等。下图为火箭/冲压组合发动机原理图冲压喷气发动机的优缺点冲压发动机的优势在于构造简单、重量轻、体积小、推重比大、成本低。简单的说就是一个带燃油喷嘴和和点火装置的筒子。因此常用于无人机、靶机、导弹等低成本或一次性的飞行器。同时由于推重比远大于其他类型的喷气发动机,非常适合驱动高超音速飞行器,如空天飞机、先进反舰导弹等。但冲压发动机没有压气机,就不能在地面静止情况下启动,所以不适合作为普通飞机的动力装置。通常的解决方法是增加一个助推器,使飞行器获得一定的飞行速度,然后再启动冲压发动机。最常见的助推器为火箭发动机。此外也可由其他飞行器挂载仅装有冲压发动机的飞行器,飞行到一定速度后,再将仅用冲压发动机的飞行器投放。涡轮轴发动机涡轮轴发动机的诞生涡轮轴发动机首次正式试飞是在1951年12月。作为直升机的新型动力,兼有喷气发动机和螺旋桨发动机特点的涡轮轴令直升机的发展更进一步。当时涡轮轴发动机还划入涡轮螺桨发动机一类。随着直升机的普及和其先进性能的体现,涡轮轴发动机逐渐被视为单独的一种喷气发动机。在1950年时,透博梅卡(Turbomeca)公司研制成“阿都斯特-1”(Artouste-1)涡轮轴发动机。该发动机只有一级离心式叶轮压气机,有两级涡轮的输出轴,功率达到了206千瓦(280轴马力),成为世界上第一台实用的直升机涡轮轴发动机。首先装用这种发动机的是美国贝尔直升机公司生产的Bell47(编号为XH-13F),1954年该机首飞。到了50年代中期,涡轮轴发动机开始为直升机设计者所大量采用。涡轮轴发动机的原理涡轮轴发动机与涡轮螺旋桨发动机相似,曾经被划入同一分类。它们都由涡轮喷气发动机演变而来,涡桨发动机驱动螺旋桨,涡轮轴发动机则驱动直升机的旋翼轴获得升力和气动控制力。当然涡轮轴发动机也有自己的特色:通常带有自由涡轮,而其他形式的涡轮喷气发动机一般没有自由涡轮。涡轮轴发动机具有涡轮喷气发动机的大部分特点,也有着进气道、压气机、燃烧室和尾喷管等基本组件。其特有的自由涡轮位于燃烧室后方,高能燃气对自由涡轮作功,通过传动轴、减速器等带动直升机的旋翼旋转,从而升空飞行。自由涡轮并不像其他涡轮那样要带动压气机,它专门用于输出功率,类似于汽轮机。做功后排出的燃气,经尾喷管喷出,能量已经不大,产生的推力很小,包含的推力大约仅占总推力的十分之一左右。因此,为了适应直升机机体结构的需要,涡轮轴发动机喷口可灵活安排,可以向上,向下或向两侧,而不一定要向后。尽管涡轮轴发动机内,带动压气机的燃气发生器涡轮与自由涡轮并不机械互联,但气动上有着密切联系。对这两种涡轮,在气体热能分配上,需要随飞行条件的改变而适当调整,从而取得发动机性能与直升机旋翼性能的最优组合。参照涡轮风扇发动机理论,涡轮轴发动机带动的旋翼的直径应该越大越好。因为同一个的核心发动机,所配合的旋翼直径越大,在旋翼上所产生的升力就越大。但能量转换过程总是有损耗的,旋翼限于材料品质也不可能太大,所以旋翼的直径是有限制的。以目前的水平计算,旋翼驱动的空气流量一般是涡轮轴发动机内空气流量的500到1000倍。直升机飞得没有固定翼飞机快,最大平飞速度通常在350千米/小时以下,因此涡轮轴发动机的进气口设计也较为灵活。通常把内流进气道设计为收敛形,驱使气流在收敛时加速流动,令流场更加均匀。进口唇边呈流线形,适合亚音速流线要求,避免气流分离,保证压气机的稳定工作。此外,由于直升机飞得离地面较近,一般必需去除进气中杂质,通常都有粒子分离器。粒子分离器可以与进气道设计成一体。分离器设计为一定螺旋形状,利用惯性力场,使进气中的砂粒因为质量较大,在弯道处获得较大的惯性力,被甩出主气流之外,通过分流排出进气道之外。尽管涡轮轴发动机排气能量不高,但对于敌方红外探测装置来说仍然是相当客观的目标。发动机排气是直升机主要热辐射源之一。作战直升机必须减小自身热辐射强度,要采用红外抑制技术。一方面,要设法降低发动机外露热部件的表面温度,更重要的是,要将外界冷空气引入并混合到高温徘气热流中,从而降低温度,冲淡二氧化氯的浓度,降低红外特征。先进的红外抑制技术通常将排气装置、冷却空气道以及发动机的安装位置作为完整、有效的系统进行设计制造。我们知道,压气机包括分为轴流式和离心式两种。轴流式压气机,面积小、流量大;离心式结构简单、工作较稳定。涡轮轴发动机从纯轴流式开始,发展了单级离心、双级离心到轴流与离心混装一起的组合式压气机,历经多次变革。目前涡轮轴发动机一般采用若干级轴流加一级离心构成组合压气机,兼有两者的优点。国产涡轴-6、涡轴-8发动机为1级轴流加1级离心构成的组合压气机;“黑鹰”直升机上的T700发动机采用5级轴流加1级离心压气机。压气机部件主要包括进气导流器、压气机转子、压气机静子及防喘装置等。压气机转子是一个高速旋转的组合件,轴流式转子叶片呈叶栅排列安装在工作叶轮周围,离心式转子叶片则呈辐射形状铸在叶轮外部。压气机静子由压气机壳体和静止叶片组成。转子旋转时,通过转子叶片迫使空气向后流动,不仅加速了空气,而且使空气受到压缩,转子叶片后面的空气压强大于前面的压强。气流离开转子叶片后,进入起扩压作用的静子叶片。在静子叶片的通道,空气流速降低、压强升高,得到进一步压缩。一个转子加一个静子称为一级。衡量空气经过压气机被压缩的程度,常用压缩后与压缩前的压强之比,即增压比来表示。涡轮轴发动机的优缺点直升机最初使用活塞式发动机,现在仍有大量采用。涡轮轴发动机与之相比,由于具有涡轮喷气发动机的特性,其功率大,重量轻,功率重量比一般在2.5以上。目前涡轮轴发动机可产生高达6000甚至10000马力的功率,活塞发动机几乎不能做到。涡轮轴发动机的耗油率虽然略高于活塞式发动机,但其使用的航空煤油要比活塞发动机用的汽油便宜。涡轮轴发动机的缺点主要在于,制造相对困难,初始成本也较高。此外,直升机旋翼的转速较低,涡轮轴发动机需要很重很大的减速齿轮系统进行传动,有时其重量竟占动力系统总重量一半以上。而活塞发动机本身转速较低,传动系统相对简单。对于一些普及型或超小型的直升机来说,使用活塞发动机仍然是较好的选择。变循环喷气发动机从飞机/发动机设计理念可知,对于持续高马赫数飞行任务,需要高单位推力的涡喷循环。反之,如果任务强调低马赫数和长航程,就需要低耗油率的涡扇循环。当任务兼有超声速飞行和亚声速飞行或存在多设计点时,麻烦就出现了。为任务的某一部分设计的循环在飞行包线其他地方的性能就差。在燃油消耗几乎均分在超声速和亚声速飞行的混合任务中或在多工作点是必须的情况下,变循环发动机(VCE)显示出巨大的潜力。变循环喷气发动机的原理VCE是通过改变发动机一些部件的几何形状、尺寸或位置来改变其热力循环的燃气涡轮发动机。利用变循环改变发动机循环参数,如增压比、涡轮前温度、空气流量和涵道比,可以使发动机在各种飞行和工作状态下都具有良好的性能。在涡喷/涡扇发动机方面,VCE研究的重点是改变涵道比:在爬升、加速和超声速飞行时:发动机涵道比减小,以接近涡喷发动机的性能,以增大推力。在起飞和亚声速飞行时:发动机涵道比增大,以涡扇发动机状态工作,降低耗油率和噪声。变循环喷气发动机的发展历程由于受超声速客机和大飞行包线多任务战斗机需求的驱动,早在20世纪60年代国外就开始VCE的研究。1971年,美国航宇局(NASA)开始实施超声速巡航研究(SCR)计划,该计划的头3年,发动机承包商从上百个方案中优选出能够满足亚声速和超声速飞行相互矛盾要求的两种VCE,即GEAE公司的双涵道发动机(DBE)和普惠公司的变流路控制发动机(VSCE)。为了将研究工作集中在这两种VCE上,NASA在1976年制定了单独的超声速推进技术研究计划。到1981年计划结束时,相对1971年的GE4(GE当时研制的一种超声速运输机用发动机),经验证的VCE的超声速巡航耗油率下降10%,跨声速耗油率有类似的改善,亚声速的耗油率改善达24%,而重量仅为GE4的75%。VSCE具有常规外涵加力涡扇发动机的流路,但采用独特的主燃烧室控制程序,并广泛采用变转速和变几何的风扇、压气机以及变几何的主喷管和副喷管,以控制其工作时的涵道比。在亚声速巡航状态,外涵不开加力,发动机以一种常规分排中等涵道比(约1.5)涡扇发动机工作,因而具有比较好的亚声速巡航性能。起飞、加速和超声速巡航时,需要大的推力,因而打开外涵加力。起飞开加力时噪声增大,但因采用同心环反速度场喷管而得以降低。结果,起飞时的噪声相当于常规涡扇发动机的噪声水平。在超声速巡航时,通过提高涡轮前温度和变几何,加大高压转子转速,这样,涵道比减小,对加力的需求也减小,其耗油率接近设计良好的涡喷发动机。1985年后,美国的VCE研究工作纳入NASA的高速推进研究计划(HSPR),DBE和VSCE两种方案继续得到发展。进入90年代后,美国、欧洲和日本又掀起研究超声速(M3)和高超声速客机推进系统的热潮。罗-罗公司提出可放气的VCE。法国斯奈克玛公司提出了中间风扇的MCV99VCE方案。1989年,日本开始着手为期10年的超声速和高超声速推进系统研究计划(HYPR),并于1999年完成,总投资约3亿美元。计划的目标是为超声速运输机和高速运输机的推进系统打下技术基础。通过研究和试验马赫数5的组合循环发动机(CCE)验证了其可行性。CCE由VCE(代号为HYPR-T)和以甲烷为燃料的冲压发动机组成。HYPR-T的方案与GE公司的DBE类似。1996年12月到1997年2月,HYPR-T发动机的模拟高空试验在GE的模拟高空试验台上进行,模拟的速度为马赫数3,高度20700米。通过试验,成功地验证了发动机的适用性。在试验中,涡轮前温度达到1873K,涵道比从0.6成功地变化到0.9。通过改变低压涡轮导向器的角度,在高速高温状态下的推力增加15%。VCE研究的另一个驱动力来自战斗机方面。自20世纪60年代以来,战斗机一方面朝着多用途方向发展,另一方面,飞机的飞行包线不断扩大,从低亚声速待机到高亚声速和超声速巡航和机动(开加力或不开加力),飞行高度从海平面到15千米~17千米,作战半径达1000千米~2000千米。VCE正好能满足这种多飞行状态的性能要求。据模拟计算结果,对于罗-罗公司选择的放气VCE,虽然重量增加50千克,但它仍可使飞机起飞总重和任务油耗分别降低2.33%和3.36%;对于GE公司的双涵VCE,任务油耗可降低2%~3.5%,而且,在亚声速飞行时,VCE的涡轮前温度在某些点上可降低300K以上,这可用来进一步降低耗油率或延长涡轮寿命。特别是在20世纪70年代后,更加重视飞机机体/推进系统一体化设计,VCE还能降低溢流和后体阻力,其优势更为明显。于是,对军用目的VCE的研究逐步开展起来。F120F120是美国空军F-22先进战术战斗机的候选发动机,GE公司编号为GE37,加力推力15880千克,涵道比是0~0.35。它是美国空军和海军在1983~1990年主持的SCR、ATEGG、JTDE和ManTech等一系列计划的产物。F120是一种能满足先进战术战斗机的高单位推力和部分功率状态低耗油率相互矛盾要求的双涵VCE,其基本结构是一台对转涡轮的双转子涡扇发动机。低压涡轮驱动两级风扇,高压涡轮驱动5级压气机(含CDFS)。两个涡轮对转,都是单级设计,无级间导向器。控制系统为三余度多变量FADEC。它能够以单涵和双涵模式工作。在亚声速巡航的低功率状态,发动机以双涵(涡扇)模式工作。被动作动旁路系统由第二级风扇和CDFS涵道之间的压差打开,使更多的空气进入外涵道,同时使风扇具有大的喘振裕度。此时,后VABI也打开,更多的外涵空气引射进入主排气流,使推力增大。在超声速巡航的高功率状态,发动机以单涵(涡喷)模式工作。在此模式下,后VABI关小到使涡轮框架、加力燃烧室内衬和尾喷管内衬前后保持正的风扇冷却气流压差。当后VABI关小时,外涵中的压力增加,直到超过第二级风扇排气压力为止。在反压作用下,旁路系统模式选择活门关闭,迫使空气进入核心机。有少量空气从CDFS后引出,供加力燃烧室和喷管冷却以及飞机引气用。发动机顺利进入涡喷模式。F120的最终结构经过三个阶段的发展。第一阶段用XF120进行地面试验,验证了基本循环的灵活性、性能特性、涡轮温度能力和失速裕度以及FADEC和二元矢量喷管的工作。第二阶段用YF120进行飞行试验。第三阶段的F120吸取了XF120和YF120计划的所有经验教训。YF120的流量比XF120的大,以满足不断增加的机体需求和喷管冷却要求。重量和复杂性被减到最小,而保障性始终作为一个关键设计目标。在F-22的原型机试验计划中,YF120成功地在YF-22和YF-23上飞行。它达到了重量、寿命、适用性和性能目标。它还达到或超过严格的最大不加力超声速巡航推力目标。F120自然是从XF120地面试验和YF120飞行试验成功的基础上发展起来的。在F120上,用一个被动旁路系统代替了可调模式选择活门。对叶轮机作了改进,以改善匹配特性和效率。控制系统简化到了常规涡扇发动机的水平。因此,F120在比目前战斗机发动机更低的复杂性的条件下具有固有的灵活性和优良的保障性。它为飞机提供了优良的速度、加速性、机动性和航程能力。总的来说,F120与GE公司成功的F110系列相比,结构简单得多,零件数少40%。虽然F120在第四代战斗机的竞争中败给常规的F119,但仍作为替换发动机继续研制。VCE也仍是IHPTET计划的一项重要技术目标。著名的V2500发动机(曾用于MD-90)桨扇发动机螺桨风扇发动机是一种介于涡轮风扇发动机和涡轮螺旋桨发动机之间的一种发动机形式,其目标是将前者的高速性能和后者的经济性结合起来。螺桨风扇发动机的结构见图,它由燃气发生器和一副螺桨-风扇(因为实在无法给这个又象螺旋桨又象风扇的东东起个名字,只好叫它螺桨-风扇)组成。螺桨-风扇由涡轮驱动,无涵道外壳,装有减速器,从这些来看它有一点象螺旋桨;但是它的直径比普通螺旋桨小,叶片数目也多(一般有6~8叶),叶片又薄又宽,而且前缘后掠,这些又有些类似于风扇叶片根据涡轮风扇发动机的原理,在飞行速度不变的情况下,涵道比越高,推进效率就越高,因此现代新型不加力涡轮风扇发动机的涵道比越来越大,已经接近了结构所能承受的极限;而去掉了涵道的涡轮螺旋桨发动机尽管效率较高,但由于螺旋桨的速度限制无法应用于M0.8~M0.95的现代高亚音速大型宽体客机,螺桨风扇发动机的概念则应运而生。由于无涵道外壳,螺桨风扇发动机的涵道比可以很大,以正在研究中的一种发动机为例,在飞行速度为M0.8时,带动的空气量约为内涵空气流量的100倍,相当于涵道比为100,这是涡轮风扇发动机所望尘莫及的,将其应用于飞机上,可将高空巡航耗油率较目前高涵道比轮风扇发动机降低15%左同涡轮螺旋桨发动机相比,螺桨风扇发动机的可用速度又高很多,这是由它们叶片形状不同所决定的。普通螺旋桨叶片的叶型厚度大以保证强度,弯度大以保证升力系数,从剖面来看,这种叶型实际上就是典型的低速飞机的机翼剖面形状,它在低速情况下效率很高,但一旦接近音速,效率就急剧下降,因此装有涡轮螺旋桨发动机的飞机速度限制在M0.6~M0.65左右;而螺桨-风扇的既宽且薄、前缘尖锐并带有后掠的叶型则类似于超音速机翼的剖面形状,这种叶型的跨音速性能就要好的多,在飞行速度为M0.8时仍有良好的推进效率,是目前新型发动机中最有希望的一种。当然,螺桨风扇发动机也有其缺点,由于转速较高,产生的振动和噪音也较大,这对舒适性有严格要求的客机来讲是一个难题。另外,暴露在空气中的螺桨-风扇的气动设计也是目前研究的难点所在图1.13的发动机是桨扇发动机的一种方案,可以视为采用先进技术的涡轮螺桨发动机。图1.14是带有外涵道的桨扇发动机,可以视为超高涵道比的涡轮风扇发动机(涵道比为15~20量级)。普通螺旋桨由3到4片直叶片组成,而桨扇由8到10片后掠叶片组成,此外还具有叶型薄、最大厚度位置后移等特点。这些特点克服了一般螺旋桨在飞行马赫数在达到0.65(大约800KM/H)之后效率迅速下降的问题,而使推进效率较高的优越性保持到飞行马赫数0.8左右。变循环喷气发动机从飞机/发动机设计理念可知,对于持续高马赫数飞行任务,需要高单位推力的涡喷循环。反之,如果任务强调低马赫数和长航程,就需要低耗油率的涡扇循环。当任务兼有超声速飞行和亚声速飞行或存在多设计点时,麻烦就出现了。为任务的某一部分设计的循环在飞行包线其他地方的性能就差。在燃油消耗几乎均分在超声速和亚声速飞行的混合任务中或在多工作点是必须的情况下,变循环发动机(VCE)显示出巨大的潜力。变循环喷气发动机的原理VCE是通过改变发动机一些部件的几何形状、尺寸或位置来改变其热力循环的燃气涡轮发动机。利用变循环改变发动机循环参数,如增压比、涡轮前温度、空气流量和涵道比,可以使发动机在各种飞行和工作状态下都具有良好的性能。在涡喷/涡扇发动机方面,VCE研究的重点是改变涵道比:在爬升、加速和超声速飞行时:发动机涵道比减小,以接近涡喷发动机的性能,以增大推力。在起飞和亚声速飞行时:发动机涵道比增大,以涡扇发动机状态工作,降低耗油率和噪声。变循环喷气发动机的发展历程由于受超声速客机和大飞行包线多任务战斗机需求的驱动,早在20世纪60年代国外就开始VCE的研究。1971年,美国航宇局(NASA)开始实施超声速巡航研究(SCR)计划,该计划的头3年,发动机承包商从上百个方案中优选出能够满足亚声速和超声速飞行相互矛盾要求的两种VCE,即GEAE公司的双涵道发动机(DBE)和普惠公司的变流路控制发动机(VSCE)。为了将研究工作集中在这两种VCE上,NASA在1976年制定了单独的超声速推进技术研究计划。到1981年计划结束时,相对1971年的GE4(GE当时研制的一种超声速运输机用发动机),经验证的VCE的超声速巡航耗油率下降10%,跨声速耗油率有类似的改善,亚声速的耗油率改善达24%,而重量仅为GE4的75%。VSCE具有常规外涵加力涡扇发动机的流路,但采用独特的主燃烧室控制程序,并广泛采用变转速和变几何的风扇、压气机以及变几何的主喷管和副喷管,以控制其工作时的涵道比。在亚声速巡航状态,外涵不开加力,发动机以一种常规分排中等涵道比(约1.5)涡扇发动机工作,因而具有比较好的亚声速巡航性能。起飞、加速和超声速巡航时,需要大的推力,因而打开外涵加力。起飞开加力时噪声增大,但因采用同心环反速度场喷管而得以降低。结果,起飞时的噪声相当于常规涡扇发动机的噪声水平。在超声速巡航时,通过提高涡轮前温度和变几何,加大高压转子转速,这样,涵道比减小,对加力的需求也减小,其耗油率接近设计良好的涡喷发动机。1985年后,美国的VCE研究工作纳入NASA的高速推进研究计划(HSPR),DBE和VSCE两种方案继续得到发展。进入90年代后,美国、欧洲和日本又掀起研究超声速(M3)和高超声速客机推进系统的热潮。罗-罗公司提出可放气的VCE。法国斯奈克玛公司提出了中间风扇的MCV99VCE方案。1989年,日本开始着手为期10年的超声速和高超声速推进系统研究计划(HYPR),并于1999年完成,总投资约3亿美元。计划的目标是为超声速运输机和高速运输机的推进系统打下技术基础。通过研究和试验马赫数5的组合循环发动机(CCE)验证了其可行性。CCE由VCE(代号为HYPR-T)和以甲烷为燃料的冲压发动机组成。HYPR-T的方案与GE公司的DBE类似。1996年12月到1997年2月,HYPR-T发动机的模拟高空试验在GE的模拟高空试验台上进行,模拟的速度为马赫数3,高度20700米。通过试验,成功地验证了发动机的适用性。在试验中,涡轮前温度达到1873K,涵道比从0.6成功地变化到0.9。通过改变低压涡轮导向器的角度,在高速高温状态下的推力增加15%。VCE研究的另一个驱动力来自战斗机方面。自20世纪60年代以来,战斗机一方面朝着多用途方向发展,另一方面,飞机的飞行包线不断扩大,从低亚声速待机到高亚声速和超声速巡航和机动(开加力或不开加力),飞行高度从海平面到15千米~17千米,作战半径达1000千米~2000千米。VCE正好能满足这种多飞行状态的性能要求。据模拟计算结果,对于罗-罗公司选择的放气VCE,虽然重量增加50千克,但它仍可使飞机起飞总重和任务油耗分别降低2.33%和3.36%;对于GE公司的双涵VCE,任务油耗可降低2%~3.5%,而且,在亚声速飞行时,VCE的涡轮前温度在某些点上可降低300K以上,这可用来进一步降低耗油率或延长涡轮寿命。特别是在20世纪70年代后,更加重视飞机机体/推进系统一体化设计,VCE还能降低溢流和后体阻力,其优势更为明显。于是,对军用目的VCE的研究逐步开展起来。F120F120是美国空军F-22先进战术战斗机的候选发动机,GE公司编号为GE37,加力推力15880千克,涵道比是0~0.35。它是美国空军和海军在1983~1990年主持的SCR、ATEGG、JTDE和ManTech等一系列计划的产物。F120是一种能满足先进战术战斗机的高单位推力和部分功率状态低耗油率相互矛盾要求的双涵VCE,其基本结构是一台对转涡轮的双转子涡扇发动机。低压涡轮驱动两级风扇,高压涡轮驱动5级压气机(含CDFS)。两个涡轮对转,都是单级设计,无级间导向器。控制系统为三余度多变量FADEC。它能够以单涵和双涵模式工作。在亚声速巡航的低功率状态,发动机以双涵(涡扇)模式工作。被动作动旁路系统由第二级风扇和CDFS涵道之间的压差打开,使更多的空气进入外涵道,同时使风扇具有大的喘振裕度。此时,后VABI也打开,更多的外涵空气引射进入主排气流,使推力增大。在超声速巡航的高功率状态,发动机以单涵(涡喷)模式工作。在此模式下,后VABI关小到使涡轮框架、加力燃烧室内衬和尾喷管内衬前后保持正的风扇冷却气流压差。当后VABI关小时,外涵中的压力增加,直到超过第二级风扇排气压力为止。在反压作用下,旁路系统模式选择活门关闭,迫使空气进入核心机。有少量空气从CDFS后引出,供加力燃烧室和喷管冷却以及飞机引气用。发动机顺利进入涡喷模式。F120的最终结构经过三个阶段的发展。第一阶段用XF120进行地面试验,验证了基本循环的灵活性、性能特性、涡轮温度能力和失速裕度以及FADEC和二元矢量喷管的工作。第二阶段用YF120进行飞行试验。第三阶段的F120吸取了XF120和YF120计划的所有经验教训。YF120的流量比XF120的大,以满足不断增加的机体需求和喷管冷却要求。重量和复杂性被减到最小,而保障性始终作为一个关键设计目标。在F-22的原型机试验计划中,YF120成功地在YF-22和YF-23上飞行。它达到了重量、寿命、适用性和性能目标。它还达到或超过严格的最大不加力超声速巡航推力目标。F120自然是从XF120地面试验和YF120飞行试验成功的基础上发展起来的。在F120上,用一个被动旁路系统代替了可调模式选择活门。对叶轮机作了改进,以改善匹配特性和效率。控制系统简化到了常规涡扇发动机的水平。因此,F120在比目前战斗机发动机更低的复杂性的条件下具有固有的灵活性和优良的保障性。它为飞机提供了优良的速度、加速性、机动性和航程能力。总的来说,F120与GE公司成功的F110系列相比,结构简单得多,零件数少40%。虽然F120在第四代战斗机的竞争中败给常规的F119,但仍作为替换发动机继续研制。VCE也仍是IHPTET计划的一项重要技术目标。著名的V2500发动机(曾用于MD-90)桨扇发动机螺桨风扇发动机是一种介于涡轮风扇发动机和涡轮螺旋桨发动机之间的一种发动机形式,其目标是将前者的高速性能和后者的经济性结合起来。螺桨风扇发动机的结构见图,它由燃气发生器和一副螺桨-风扇(因为实在无法给这个又象螺旋桨又象风扇的东东起个名字,只好叫它螺桨-风扇)组成。螺桨-风扇由涡轮驱动,无涵道外壳,装有减速器,从这些来看它有一点象螺旋桨;但是它的直径比普通螺旋桨小,叶片数目也多(一般有6~8叶),叶片又薄又宽,而且前缘后掠,这些又有些类似于风扇叶片根据涡轮风扇发动机的原理,在飞行速度不变的情况下,涵道比越高,推进效率就越高,因此现代新型不加力涡轮风扇发动机的涵道比越来越大,已经接近了结构所能承受的极限;而去掉了涵道的涡轮螺旋桨发动机尽管效率较高,但由于螺旋桨的速度限制无法应用于M0.8~M0.95的现代高亚音速大型宽体客机,螺桨风扇发动机的概念则应运而生。由于无涵道外壳,螺桨风扇发动机的涵道比可以很大,以正在研究中的一种发动机为例,在飞行速度为M0.8时,带动的空气量约为内涵空气流量的100倍,相当于涵道比为100,这是涡轮风扇发动机所望尘莫及的,将其应用于飞机上,可将高空巡航耗油率较目前高涵道比轮风扇发动机降低15%左同涡轮螺旋桨发动机相比,螺桨风扇发动机的可用速度又高很多,这是由它们叶片形状不同所决定的。普通螺旋桨叶片的叶型厚度大以保证强度,弯度大以保证升力系数,从剖面来看,这种叶型实际上就是典型的低速飞机的机翼剖面形状,它在低速情况下效率很高,但一旦接近音速,效率就急剧下降,因此装有涡轮螺旋桨发动机的飞机速度限制在M0.6~M0.65左右;而螺桨-风扇的既宽且薄、前缘尖锐并带有后掠的叶型则类似于超音速机翼的剖面形状,这种叶型的跨音速性能就要好的多,在飞行速度为M0.8时仍有良好的推进效率,是目前新型发动机中最有希望的一种。当然,螺桨风扇发动机也有其缺点,由于转速较高,产生的振动和噪音也较大,这对舒适性有严格要求的客机来讲是一个难题。另外,暴露在空气中的螺桨-风扇的气动设计也是目前研究的难点所在图1.13的发动机是桨扇发动机的一种方案,可以视为采用先进技术的涡轮螺桨发动机。图1.14是带有外涵道的桨扇发动机,可以视为超高涵道比的涡轮风扇发动机(涵道比为15~20量级)。普通螺旋桨由3到4片直叶片组成,而桨扇由8到10片后掠叶片组成,此外还具有叶型薄、最大厚度位置后移等特点。这些特点克服了一般螺旋桨在飞行马赫数在达到0.65(大约800KM/H)之后效率迅速下降的问题,而使推进效率较高的优越性保持到飞行马赫数0.8左右。涡轮螺旋桨发动机一般来说,现代不加力涡轮风扇发动机的涵道比是有着不断加大的趋势的。因为对于涡轮风扇发动机来说,若飞行速度一定,要提高飞机的推进效率,也就是要降低排气速度和飞行速度的差值,需要加大涵道比;而同时随着发动机材料和结构工艺的提高,许用的涡轮前温度也不断提高,这也要求相应地增大涵道比。对于一架低速(500~600km/h)的飞机来说,在一定的涡轮前温度下,其适当的涵道比应为50以上,这显然是发动机的结构所无法承受的为了提高效率,人们索性便抛去了风扇的外涵壳体,用螺旋桨代替了风扇,便形成了涡轮螺旋桨发动机,简称涡桨发动机。涡轮螺旋桨发动机由螺旋桨和燃气发生器组成,螺旋桨由涡轮带动。由于螺旋桨的直径较大,转速要远比涡轮低,只有大约1000转/分,为使涡轮和螺旋桨都工作在正常的范围内,需要在它们之间安装一个减速器,将涡轮转速降至十分之一左右后,才可驱动螺旋桨。这种减速器的负荷重,结构复杂,制造成本高,它的重量一般相当于压气机和涡轮的总重,作为发动机整体的一个部件,减速器在设计、制造和试验中占有相当重要的地位。涡轮螺旋桨发动机的螺旋桨后的空气流就相当于涡轮风扇发动机的外涵道,由于螺旋桨的直径比发动机大很多,气流量也远大于内涵道,因此这种发动机实际上相当于一台超大涵道比的涡轮风扇发动机。尽管工作原理近似,但涡轮螺旋桨发动机和涡轮风扇发动机在产生动力方面却有着很大的不同,涡轮螺旋桨发动机的主要功率输出方式为螺旋桨的轴功率,而尾喷管喷出的燃气推力极小,只占总推力的5%左右,为了驱动大功率的螺旋桨,涡轮级数也比涡轮风扇发动机要多,一般为2~6级。同活塞式发动机+螺旋桨相比,涡轮螺旋桨发动机有很多优点。首先,它的功率大,功重比(功率/重量)也大,最大功率可超过10000马力,功重比为4以上;而活塞式发动机最大不过三四千马力,功重比2左右。其次,由于减少了运动部件,尤其是没有做往复运动的活塞,涡轮螺旋桨发动机运转稳定性好,噪音小,工作寿命长,维修费用也较低。而且,由于核心部分采用燃气发生器,涡轮螺旋桨发动机的适用高度和速度范围都要比活塞式发动机高很多。在耗油率方面,二者相差不多,但涡轮螺旋桨发动机所使用的煤油要比活塞式发动机的汽油便宜。由于涵道比大,涡轮螺旋桨发动机在低速下效率要高于涡轮风扇发动机,但受到螺旋桨效率的影响,它的适用速度不能太高,一般要小于900km/h。目前在中低速飞机或对低速性能有严格要求的巡逻、反潜或灭火等类型飞机中的到广泛应用。火箭发动机现代火箭发动机主要分固体推进剂和液体推进剂发动机。所谓“推进剂”就是燃料(燃烧剂)加氧化剂的合称。固体火箭发动机固体火箭发动机为使用固体推进剂的化学火箭发动机。固体推进剂有聚氨酯、聚丁二烯、端羟基聚丁二烯、硝酸酯增塑聚醚等。固体火箭发动机由药柱、燃烧室、喷管组件和点火装置等组成。药柱是由推进剂与少量添加剂制成的中空圆柱体(中空部分为燃烧面,其横截面形状有圆形、星形等)。药柱置于燃烧室(一般即为发动机壳体)中。在推进剂燃烧时,燃烧室须承受25O0~35O0度的高温和102~2×107帕的高压力,所以须用高强度合金钢、钛合金或复合材料制造,并在药柱与燃烧内壁间装备隔热衬。点火装置用于点燃药柱,通常由电发火管和火药盒(装黑火药或烟火剂)组成。通电后由电热丝点燃黑火药,再由黑火药点火燃药拄。喷管除使燃气膨胀加速产生推力外,为了控制推力方向,常与推力向量控制系统组成喷管组件。该系统能改变燃气喷射角度,从而实现推力方向的改变。药柱燃烧完毕,发动机便停止工作。固体火箭发动机与液体火箭发动机相比较,具有结构简单,推进剂密度大,推进剂可以储存在燃烧到中常备待用和操纵方便可靠等优点。缺点是“比冲”小(也叫比推力,是发动机推力与每秒消耗推进剂重量的比值,单位为秒)。固体火箭发动机比冲在25O~300秒,工作时间短,加速度大导致推力不易控制,重复起动困难,从而不利于载人飞行。固体火箭发动机主要用作火箭弹、导弹和探空火箭的发动机,以及航天器发射和飞机起飞的助推发动机。液体火箭发动机液体火箭发动机是指液体推进剂的化学火箭发动机。常用的液体氧化剂有液态氧、四氧化二氮等,燃烧剂由液氢、偏二甲肼、煤油等。氧化剂和燃烧剂必须储存在不同的储箱中。液体火箭发动机一般由推力室、推进剂供应系统、发动机控制系统组成。推力室是将液体推进剂的化学能转变成推进力的重要组件。它由推进剂喷嘴、燃烧室、喷管组件等组成,见图。推进剂通过喷注器注入燃烧室,经雾化,蒸发,混合和燃烧等过成生成燃烧产物,以高速(25O0一5000米/秒)从喷管中冲出而产生推力。燃烧室内压力可达2O0大气压(约20OMPa)、温度300O~400O℃,故需要冷却。推进剂供应系统的功用是按要求的流量和压力向燃烧室输送推进剂。按输送方式不同,有挤压式(气压式)和泵压式两类供应系统。挤压式供应系统是利用高压气体经减压器减压后(氧化剂、燃烧剂的流量是靠减压器调定的压力控制)进入氧化剂、燃烧剂贮箱,将其分别挤压到燃烧室中。挤压式供应系统只用于小推力发动机。大推力发动机则用泵压式供应系统,这种系统是用液压泵输送推进剂。发动机控制系统的功用是对发动机的工作程序和工作参数进行调节和控制。工作程序包括发动机起动、工作。关机三个阶段,这一过程是按预定程序自动进行的。工作参数主要指推力大小、推进剂的混合比。液体火箭发动机的优点是比冲高(25O~5OO秒),推力范围大(单台推力在1克力~700吨力)、能反复起动、能控制推力大小、工作时间较长等。液体火箭发动机主要用作航天器发射、姿态修正与控制、轨道转移等。电火箭发动机电火箭发动机是利用电能加速工质,形成高速射流而产生推力的火箭发动机。与化学火箭发动机不同,这种发动机的能源和工质是分开的。电能由飞行器提供,一般由太阳能、核能、化学能经转换装置得到。工质有氢、氮、氩、汞、氨等气体。电火箭发动机由电源、电源交换器、电源调节器、工质供应系统和电推力器组成。电源和电源交换器供给电能;电源调节器的功用是按预定程序起动发动机,并不断调整电推力器的各种参数,使发动机始终处于规定的工作状态;工质供应系统则是贮存工质和输送工质;电推力器的作用是将电能转换成工质的动能,使其产生高速喷气流而产生推力。按加速工质的方式不同,电火箭发动机有电热火箭发动机、静电火箭发动机和电磁火箭发动机的三种类型。电热火箭发动机利用电能加热(电阻加热或电弧加热)工质(氢、胺、肼等),使其气化;经喷管膨胀加速后,由喷口排出而产生推力。静电火箭发动机的工质(汞、铯、氢等)从贮箱输入电离室被电离成离子,然后在电极的静电场作用下加速成高速离子流而产生推力。电磁火箭发动机是利用电磁场加速被电离工质而产生射流,形成推力。电火箭发动机具有极高的比冲(70O~250O秒)、极长的寿命(可重复起动上万次、累计工作可达上万小时)。但产生的推力小于10ON。这种发动机仅适用于航天器的姿态控制、位置保持等。核火箭发动机核火箭发动机用核燃料作能源,用液氢、液氦、液氨等作工质。核火箭发动机由装在推力室中的核反应堆、冷却喷管、工质输送系统和控制系统等组成。在核反应堆中,核能转变成热能以加热工质,被加热的工质经喷管膨胀加速后,以6500~1100O米/秒的速度从喷口排出而产生推力。核火箭发动机的比冲高(250~1000秒)寿命长,但技术复杂,只适用于长期工作的航天器。这种发动机由于核辐射防护、排气污染、反应堆控制,以及高效热能交换器的设计等问题未能解决,至今仍处于试验之中。此外,太阳加热式和光子火箭发动机尚处于理论探索阶段。机翼机翼是飞机的重要部件之一,安装在机身上。其最主要作用是产生升力,同时也可以在机翼内布置弹药仓和油箱,在飞行中可以收藏起落架。另外,在机翼上还安装有改善起飞和着陆性能的襟翼和用于飞机横向操纵的副翼,有的还在机翼前缘装有缝翼等增加升力的装置。由于飞机是在空中飞行的,因此和一般的运输工具和机械相比,就有很大的不同。飞机的各个组成部分要求在能够满足结构强度和刚度的情况下尽可能轻,机翼自然也不例外,加之机翼是产生升力的主要部件,而且许多飞机的发动机也安装在机翼上或机翼下,因此所承受的载荷就更大,这就需要机翼有很好的结构强度以承受这巨大的载荷,同时也要有很大的刚度保证机翼在巨大载荷的作用下不会过分变形。机翼的分类机翼的分类方法有很多种,常用的分类方法有:*按机翼的数量分类:可分为单翼机、双翼机、多翼机等;*按机翼的平面形状分类:可分为平直翼、后掠翼、前掠翼、三角翼等等;*按机翼的构造形式分类:可分为构架式、梁式、壁板式、整体式等等。此外,机翼的剖面形状也是多种多样,随着生产技术以及流体力学的发展,从早期的平直矩形机翼剖面到后来的流线形剖面、菱形剖面,机翼的升力性能越来越好,相反受到的空气阻力越来越小,也就是说机翼的升力系数越来越大,相同面积的机翼所产生的升力就越来越大。随着航空技术的发展及飞行气动力需要,飞机的翼型已发展有多种形式,下图列举的十种是有了实际应用的翼型剖面。图中(1)是平板形翼剖面,它相当于风筝的剖面,靠迎角产生升力;(2)是典型的鸟翼剖面,多用在早期的飞机上,如图15;(3)(4)(5)及(6)为上拱下略平的翼剖面,气动力特性好,升力大,多用于亚音速以下的飞机;其余的翼剖面多为上下翼面对称的翼型剖面,能做成薄形机翼,对超音速飞行很有好处,多用于超音速飞机或飞机的尾翼上。美国制造的SR-71高空高速侦察机,机翼呈上翼面略带拱型的平板型机翼,飞行高度3万米,速度M=3。很眼熟吧!美国研制的试验性飞机X-43A用超燃冲压发动机作动力,于2004年11月16日在33500米高空中创造飞行速度达音速9.8倍的速度纪录(11265千米/小时)翼形为平板型机翼。这个家伙猛啊,世界记录的保持者!机翼的几何参数机翼的外形五花八门、多种多样,有平直的,有三角的,有后掠的,也有前掠的等等。然而,不论采用什么样的形状,设计者都必须使飞机具有良好的气动外形,并且使结构重量尽可能的轻。所谓良好的气动外形,是指升力大、阻力小、稳定操纵性好。以下是用来衡量机翼气动外形的主要几何参数:翼展:翼展是指机翼左右翼尖之间的长度,一般用l表示。翼弦:翼弦是指机翼沿机身方向的弦长。除了矩形机翼外,机翼不同地方的翼弦是不一样的,有翼根弦长b0、翼尖弦长b1。一般常用的弦长参数为平均几何弦长bav,其计算方法为:bav=(b0+b1)/2。展弦比:翼展l和平均几何弦长bav的比值叫做展弦比,用λ表示,其计算公式可表示为:λ=l/bav。同时,展弦比也可以表示为翼展的平方于机翼面积的比值。展弦比越大,机翼的升力系数越大,但阻力也增大,因此,高速飞机一般采用小展弦比的机翼。后掠角:后掠角是指机翼与机身轴线的垂线之间的夹角。后掠角又包括前缘后掠角(机翼前缘与机身轴线的垂线之间的夹角,一般用χ0表示)、后缘后掠角(机翼后缘与机身轴线的垂线之间的夹角,一般用χ1表示)及1/4弦线后掠角(机翼1/4弦线与机身轴线的垂线之间的夹角,一般用χ0.25表示)。如果飞机的机翼向前掠,则后掠角就为负值,变成了前掠角。根梢比:根梢比是翼根弦长b0与翼尖弦长b1的比值,一般用η表示,η=b0/b1。相对厚度:相对厚度是机翼翼型的最大厚度与翼弦b的比值。除此之外,机翼在安装时还可能带有上反角或者下反角。机翼的升力鸟是飞行技巧最高的飞行物,人类幻想飞天都是从观察鸟的飞行和模拟鸟飞行开始的。被世界公认的航空创始人之一的意大利画家达•芬奇长期对鸟的飞行进行观察和研究,并写出《论鸟的飞行》一书,书中还画出多幅模仿鸟的飞行器。德国航空先驱李林塔尔曾与弟弟古斯塔夫长期研究鸟类的飞翔,用鸟类飞翔启示作出过多架试验性滑翔机,并于1891年制成一架仿鸟翼的弓形翼面滑翔机,亲自试飞,飞行了30多米,从而成为了人类靠自制重于空气的飞行器飞行成功的人。他的实践充分证实了人类若想飞上蓝天,必须要有一对像鸟一样的拱型翅膀,用其产生升力才能飞行。李林塔尔把研究成果都写在他的《鸟类飞行——航空的基础》一书中。飞机发明人美国人莱特兄弟读了他的书受到很大启发,并按书中写到的“每只鸟都是一名特级飞行员,谁要飞行,谁就得模仿鸟”的论述,对鸟的飞行动作,作了更仔细的观察研究,于1903年成功地发明了世界上有动力、可操纵的飞机,成为世界公认的飞机发明人。飞机机翼结构和升力产生的机理与鸟翼的结构及产生升力的原理基本上是一致的飞机在发动机驱动下向前飞行时,流过上下翼面气流的流速不一致,上翼面流速快于下翼面,造成上翼面空气压力低于下翼面,从而使机翼产生升力,当升力大于飞机的重力时飞机就能升空飞行了。平飞状态的机翼升力图,当飞机保持平飞时,主要由翼形的上下翼面压力差提供升力。迎角状态的机翼升力图当飞机在有迎角状态下飞行时,机翼即能产生迎角升力,又能产生翼形升力,使飞机能像鸟一样自由翱翔在空中。机翼的构造机翼的基本受力构件包括纵向骨架、横向骨架、蒙皮和接头。其中接头的作用是将机翼上的载荷传递到机身上,而有些飞机整个就是一个大的飞翼(如美国的B-2隐形轰炸机),则根本就没有接头。以下是典型的梁式机翼的结构。一、纵向骨架:机翼的纵向骨架由翼梁、纵樯和桁条等组成,所谓纵向是指沿翼展方向,它们都是沿翼展方向布置的。*翼梁是最主要的纵向构件,它承受全部或大部分弯矩和剪力。翼梁一般由凸缘、腹板和支柱构成(如图所示)。凸缘通常由锻造铝合金或高强度合金钢制成,腹板用硬铝合金板材制成,与上下凸缘用螺钉或铆钉相连接。凸缘和腹板组成工字型梁,承受由外载荷转化而成的弯矩和剪力。*纵樯与翼梁十分相像,二者的区别在于纵樯的凸缘很弱并且不与机身相连,其长度有时仅为翼展的一部分。纵樯通常布置在机翼的前后缘部分,与上下蒙皮相连,形成封闭盒段,承受扭矩。靠后缘的纵樯还可以悬挂襟翼和副翼。*桁条是用铝合金挤压或板材弯制而成,铆接在蒙皮内表面,支持蒙皮以提高其承载能力,并共同将气动力分布载荷传给翼肋。二、横向骨架:机翼的横向骨架主要是指翼肋,而翼肋又包括普通翼肋和加强翼肋,横向是指垂直于翼展的方向,它们的安装方向一般都垂直于机翼前缘。*普通翼肋的作用是将纵向骨架和蒙皮连成一体,把由蒙皮和桁条传来的空气动力载荷传递给翼梁,并保持翼剖面的形状。*加强翼肋就是承受有集中载荷的翼肋。三、蒙皮:蒙皮是包围在机翼骨架外的维形构件,用粘接剂或铆钉固定于骨架上,形成机翼的气动力外形。蒙皮除了形成和维持机翼的气动外形之外,还能够承受局部气动力。早期低速飞机的蒙皮是布质的,而如今飞机的蒙皮多是用硬铝板材制成的金属蒙皮。机翼的副翼和增升装置副翼副翼构造图副翼是用于飞机横向操纵的翼面,一般安装于机翼的外侧。其本身外形是一块比较狭而长的翼面,翼展长而翼弦短。副翼的翼展一般约占整个机翼翼展的1/6到1/5左右,其翼弦占整个机翼弦长的1/5到1/4左右。副翼的构造和升降舵及方向舵相似,当然也同机翼的构造大同小异。它的受力构件也是由梁、肋、蒙皮和后缘型材组成,一般都做成无衍条的单梁式(也有带少数衍条的)。为了避免在飞行中产生的弯曲变形太大,以及提高生存力,副翼常采用三个或更多的与机翼相连的悬挂接头。这种安排的坏处在于:在飞行中由于机翼变形,使副翼的转轴变弯,难以操纵活,甚至卡住。因此有的飞机将副翼分成几段,每一段都独立地与机冀相连,各段的梁再用万象接头或铰接接头连结起来,这些接头可以传递扭矩,而不致影响整个副翼的受力。除了一般副翼以外,目前常见的副翼有:内侧副翼——目前有些高速飞机把副翼从机翼外侧移向靠近机身的内侧,这种副翼叫做内侧副翼这是因为机翼根部的抗扭刚度较大,把副翼移动到机翼内侧,可以减小副翼偏转时所引起的机翼扭转变形,改善副翼的操纵性能,提高飞机横侧操纵力,更好地满足高速飞机飞行的要求。由于内侧副翼占据了襟翼的位置,所以在采用内侧副翼时应该采用别的更有效的增升装置。如喷气襟翼和前缘襟翼等。混合副翼——这种副翼是指分成内外两块的副翼,多用在跨音速或超音速飞机上。在低速飞行时,使用外侧副翼操纵;高速飞行时,则把外侧副翼锁在中立位置,而使用内侧副翼。采用混合副翼不但可以提高副翼的操纵效率,还可以改进飞机在不同速度范围内的操纵特性。升降副翼——有些飞机由于安装操纵面的地方相对地减小,往往把副翼与其他操纵面合在一起,使它起两种作用。例如某些没有水平尾翼的三角翼飞机,其机翼后缘上需要安装操纵面的地方过挤,于是就把升降舵和副翼合并起来。它既可同时向上或向下偏转,当作升降舵使用,又可以一上一下当作副翼使用。这就是升降副翼。襟副翼——这是一种把襟翼和副翼合并在一起的操纵面,常常使用在某些高速飞机上,当它向下偏转时可起襟翼的作用,因此称为襟副翼。此外,在某些低速飞机上,既装有一般的后缘襟翼,其副翼也能同襟翼一道向下偏转,以提高增举作用。这种副翼也叫“襟副翼”,但其性质与高速飞机上的襟副翼有所不同。翼尖副翼——翼尖副翼就是将翼尖做成全动式的,整个翼尖可绕沿着翼展方向的轴线偏转。两边机翼上的翼尖副翼的偏转方向相反,即一边的前缘向上,另一边的则向下,就可起到增大一边机翼举力,减小另一边机翼举力的作用。这样便可达到使飞机倾侧的目的。在超音速飞行时,这种装置可以提高副翼的操纵性能。但在亚音速飞行时,相同面积下却比不上正常副翼的操纵效果。此外由于超音速机翼的翼尖很薄,结构布置相当困难,因此翼尖副翼使用不多。机翼增升装置我们知道,机翼是飞机上产生升力的主要部件,它提供的升力可以维持飞机平飞和机动。机翼产生的升力可以用下面的升力公式说明:Y=CyρV2S/2。式中ρ代表空气密度,V代表飞
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 现代交通枢纽的铁路货运效率优化
- 深度解读如何用云计算构建高效智能制造平台
- 国庆节巡航摩旅活动方案
- 小学趣味运动会活动方案策划
- 2024年春七年级地理下册 第九章 第二节 巴西说课稿 (新版)新人教版
- 23 梅兰芳蓄须说课稿-2024-2025学年四年级上册语文统编版001
- 8 千年梦圆在今朝(说课稿)2023-2024学年部编版语文四年级下册
- 5 协商决定班级事务 说课稿-2024-2025学年道德与法治五年级上册统编版
- 2023八年级英语上册 Module 9 Population Unit 3 Language in use说课稿(新版)外研版
- 《10天然材料和人造材料》说课稿-2023-2024学年科学三年级下册青岛版
- 文档协同编辑-深度研究
- 七年级数学新北师大版(2024)下册第一章《整式的乘除》单元检测习题(含简单答案)
- 2024-2025学年云南省昆明市盘龙区高一(上)期末数学试卷(含答案)
- 五年级上册寒假作业答案(人教版)
- 2024年财政部会计法律法规答题活动题目及答案一
- 2025年中考语文复习热搜题速递之说明文阅读(2024年7月)
- 班组现场5S与目视化管理
- 和达投资集团(杭州)有限公司招聘笔试冲刺题2025
- 政企单位春节元宵猜灯谜活动谜语200个(含谜底)
- 综治工作培训课件
- 2024年云网安全应知应会考试题库
评论
0/150
提交评论