版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGE基础模型:△ABC中,AD是BC边中线思路1:延长AD到E,使DE=AD,连接BE思路2:间接倍长,延长MD到N,使DN=MD,连接CN思路3,作CF⊥AD于F,作BE⊥AD的延长线于E1.如图,在△ABC中,AC=5,中线AD=7,则AB边的取值范围是()A.1<AB<29 B.4<AB<24 C.5<AB<19 D.9<AB<192.如图,△ABC中,AB=AC,点D在AB上,点E在AC的延长线上,DE交BC于F,且DF=EF,求证:BD=CE.3.如图,在△ABC中,AD为中线,求证:AB+AC>2AD.4.小明遇到这样一个问题,如图1,△ABC中,AB=7,AC=5,点D为BC的中点,求AD的取值范围.小明发现老师讲过的“倍长中线法”可以解决这个问题,所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法,他的做法是:如图2,延长AD到E,使DE=AD,连接BE,构造△BED≌△CAD,经过推理和计算使问题得到解决.请回答:(1)小明证明△BED≌△CAD用到的判定定理是:(用字母表示)(2)AD的取值范围是小明还发现:倍长中线法最重要的一点就是延长中线一倍,完成全等三角形模型的构造.参考小明思考问题的方法,解决问题:如图3,在正方形ABCD中,E为AB边的中点,G、F分别为AD,BC边上的点,若AG=2,BF=4,∠GEF=90°,求GF的长.5.已知:在△ABC中,AD是BC边上的中线,E是AD上一点,且BE=AC,延长BE交AC于F,求证:AF=EF.6.已知:如图,△ABC(AB≠AC)中,D、E在BC上,且DE=EC,过D作DF∥BA交AE于点F,DF=AC.求证:AE平分∠BAC.7-10,换汤不换药(多题一解)7.如图,D是△ABC的BC边上一点且CD=AB,∠BDA=∠BAD,AE是△ABD的中线.求证:∠C=∠BAE.8.如图,已知D是△ABC的边BC上的一点,CD=AB,∠BDA=∠BAD,AE是△ABD的中线.(1)若∠B=60°,求∠C的值;(2)求证:AD是∠EAC的平分线.9.如图,已知:CD=AB,∠BAD=∠BDA,AE是△ABD的中线,求证:AC=2AE.10.已知,如图,AB=AC=BE,CD为△ABC中AB边上的中线,求证:CE=2CD.11.已知:如图,△ABC中,∠C=90°,CM⊥AB于M,AT平分∠BAC交CM于D,交BC于T,过D作DE∥AB交BC于E,求证:CT=BE.12.如图①,点O为线段MN的中点,PQ与MN相交于点O,且PM∥NQ,可证△PMO≌△QNO.根据上述结论完成下列探究活动:如图②,在四边形ABCD中,AB∥DC,E为BC边的中点,∠BAE=∠EAF,AF与DC的延长线相交于点F.试探究线段AB与AF、CF之间的数量关系,并证明你的结论;(图3是原题的第2问)13.如图,在△ABC中,AD交BC于点D,点E是BC的中点,EF∥AD交CA的延长线于点F,交EF与于点G.若BG=CF,求证:AD为△ABC的角平分线.14.如图,已知在△ABC中,∠CAE=∠B,点E是CD的中点,若AD平分∠BAE.(1)求证:AC=BD;(2)若BD=3,AD=5,AE=x,求x的取值范围.15.已知在△ABC中,AD是BC边上的中线,分别以AB边、AC边为直角边各向外作等腰直角三角形,如图,求证:EF=2AD.
1.解:如图,延长AD至E,使DE=AD,∵AD是△ABC的中线,∴BD=CD,在△ABD和△ECD中,,∴△ABD≌△ECD(SAS),∴AB=CE,∵AD=7,∴AE=7+7=14,∵14+5=19,14﹣5=9,∴9<CE<19,2.证明:如图,过点D作DG∥AE,交BC于点G;3.证明:4.解:(1)如图2中,延长AD到E,使DE=AD,连接BE.在△BED和△CAD中,,∴△BED≌△CAD(SAS).(2)∵△BED≌△CAD,∴BE=AC=5,∵AB=7,∴2<AE<12,∴2<2AD<12,∴1<AD<6.解决问题:如图3中,解:延长GE交CB的延长线于M.∵四边形ABCD是正方形,∴AD∥CM,∴∠AGE=∠M,在△AEG和△BEM中,,∴△AEG≌△BEM,∴GE=EM,AG=BM=2,∵EF⊥MG,∴FG=FM,∵BF=4,∴MF=BF+BM=2+4=6,∴GF=FM=6.5.证明:如图,延长AD到点G,使得AD=DG,连接BG.∵AD是BC边上的中线(已知),∴DC=DB,在△ADC和△GDB中,∴△ADC≌△GDB(SAS),∴∠CAD=∠G,BG=AC又∵BE=AC,∴BE=BG,∴∠BED=∠G,∵∠BED=∠AEF,∴∠AEF=∠CAD,即:∠AEF=∠FAE,∴AF=EF.6.证明:如图,延长FE到G,使EG=EF,连接CG.在△DEF和△CEG中,∵,∴△DEF≌△CEG.∴DF=GC,∠DFE=∠G.∵DF∥AB,∴∠DFE=∠BAE.∵DF=AC,∴GC=AC.∴∠G=∠CAE.∴∠BAE=∠CAE.即AE平分∠BAC.7.证明:延长AE到F,使EF=AE,连接DF,∵AE是△ABD的中线∴BE=ED,在△ABE与△FDE中∵,∴△ABE≌△FDE(SAS),∴AB=DF,∠BAE=∠EFD,∵∠ADB是△ADC的外角,∴∠DAC+∠ACD=∠ADB=∠BAD,∴∠BAE+∠EAD=∠BAD,∠BAE=∠EFD,∴∠EFD+∠EAD=∠DAC+∠ACD,∴∠ADF=∠ADC,∵AB=DC,∴DF=DC,在△ADF与△ADC中∵,∴△ADF≌△ADC(SAS)∴∠C=∠AFD=∠BAE.8.(1)解:∵∠B=60°,∠BDA=∠BAD,∴∠BAD=∠BDA=60°,∴AB=AD,∵CD=AB,∴CD=AD,∴∠DAC=∠C,∴∠BDA=∠DAC+∠C=2∠C,∵∠BAD=60°,∴∠C=30°;(2)证明:延长AE到M,使EM=AE,连接DM,在△ABE和△MDE中,,∴△ABE≌△MDE,∴∠B=∠MDE,AB=DM,∵∠ADC=∠B+∠BAD=∠MDE+∠BDA=∠ADM,在△MAD与△CAD,,∴△MAD≌△CAD,∴∠MAD=∠CAD,∴AD是∠EAC的平分线.9.证明:延长AE至F,使AE=EF,连接BF,在△ADE与△BFE中,,∴△AED≌△FEB,∴BF=DA,∠FBE=∠ADE,∵∠ABF=∠ABD+∠FBE,∴∠ABF=∠ABD+∠ADB=∠ABD+∠BAD=∠ADC,在△ABF与△ADC中,,∴△ABF≌△CDA,∴AC=AF,∵AF=2AE,∴AC=2AE.10.证明:取AC的中点F,连接BF;∵B为AE的中点,∴BF为△AEC的中位线,∴EC=2BF;在△ABF与△ACD中,,∴△ABF≌△ACD(SAS),∴CD=BF,∴CE=2CD.11.证明:过T作TF⊥AB于F,∵AT平分∠BAC,∠ACB=90°,∴CT=TF(角平分线上的点到角两边的距离相等),∵∠ACB=90°,CM⊥AB,∴∠ADM+∠DAM=90°,∠ATC+∠CAT=90°,∵AT平分∠BAC,∴∠DAM=∠CAT,∴∠ADM=∠ATC,∴∠CDT=∠CTD,∴CD=CT,又∵CT=TF(已证),∴CD=TF,∵CM⊥AB,DE∥AB,∴∠CDE=90°,∠B=∠DEC,在△CDE和△TFB中,,∴△CDE≌△TFB(AAS),∴CE=TB,∴CE﹣TE=TB﹣TE,即CT=BE.12.解:(1)AB=AF+CF.如图2,分别延长DC、AE,交于G点,根据图①得△ABE≌△GCE,∴AB=CG,又AB∥DC,∴∠BAE=∠G而∠BAE=∠EAF,∴∠G=∠EAF,∴AF=GF,∴AB=CG=GF+CF=AF+CF;13.解:延长FE,截取EH=EG,连接CH,∵E是BC中点,∴BE=CE,∴∠BEG=∠CEH,在△BEG和△CEH中,,∴△BEG≌△CEH(SAS),∴∠BGE=∠H,∴∠BGE=∠FGA=∠H,∴BG=CH,∵CF=BG,∴CH=CF,∴∠F=∠H=∠FGA,∵EF∥AD,∴∠F=∠CAD,∠BAD=∠FGA,∴∠CAD=∠BAD,∴AD平分∠BAC.14.(1)证明:延长AE到F,使EF=EA,连接DF,∵点E是CD的中点,∴EC=ED,在△DEF与△CEA中,,∴△DEF≌△CEA,∴AC=FD,∴∠AFD=∠CAE,∵∠CAE=∠B,∴∠AFD=∠B,∵AD平分∠BAE,∴∠BAD=∠FAD,在△ABD与△AFD中,,∴△ABD≌△AFD,∴BD=FD,∴AC=BD;(2)解:由(1)证得△ABD≌△AFD,△DEF≌△CEA,∴AB=AF,∵AE=x,∴AF=2AE=2x,∴AB=2x,∵BD=3,AD=5,∴在△ABD中,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 甘肃中医药大学《中国特色社会主义建设状况的调查研究》2023-2024学年第一学期期末试卷
- 赣南科技学院《工程师职业素养》2023-2024学年第一学期期末试卷
- 七年级科学上册11.1生物的感觉11.1.2人体具有的感觉学案无答案牛津上海版
- 七年级语文上册第一单元1春课后习题新人教版
- 七年级道德与法治上册第二单元友谊的天空第五课交友的智慧第2框网上交友新时空说课稿新人教版
- 小学生开学课件背景
- 2021中级经济师 工商管理 真题速攻-案例题合集(附有答案解析)
- 美术教室培训课件
- 发音不清改正培训课件
- 餐饮加盟合作协议书范本7篇
- 医院十八项核心制度(四篇)
- 物流部安全培训内容
- RBA社会责任商业联盟准则(管理手册+程序+记录+培训)
- 电大《旅游工作者素质修养》期末考试复习资料
- 中职《基础会计》期末试题及答案
- GB/T 41168-2021食品包装用塑料与铝箔蒸煮复合膜、袋
- GB/T 3920-1997纺织品色牢度试验耐摩擦色牢度
- GB/T 37741-2019信息技术云计算云服务交付要求
- GB/T 34697-2017含氟蚀刻废液处理处置方法
- GB/T 16935.1-2008低压系统内设备的绝缘配合第1部分:原理、要求和试验
- 33全自动打包机URS
评论
0/150
提交评论