下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2009~2013年高考真题备选题库第10章算法初步、统计、统计案例第4节变量间的相关关系、统计案例考点一变量间的相关性1.(2013福建,5分)已知x与y之间的几组数据如下表:x123456y021334假设根据上表数据所得线性回归直线方程为eq\o(y,\s\up6(^))=eq\o(b,\s\up6(^))x+eq\o(a,\s\up6(^)),若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为y=b′x+a′,则以下结论正确的是()A.eq\o(b,\s\up6(^))>b′,eq\o(a,\s\up6(^))>a′ B.eq\o(b,\s\up6(^))>b′,eq\o(a,\s\up6(^))<a′C.eq\o(b,\s\up6(^))<b′,eq\o(a,\s\up6(^))>a′ D.eq\o(b,\s\up6(^))<b′,eq\o(a,\s\up6(^))<a′解析:本题主要考查线性回归直线方程,意在考查考生的数形结合能力、转化和化归能力、运算求解能力.由两组数据(1,0)和(2,2)可求得直线方程为y=2x-2,b′=2,a′=-2.而利用线性回归方程的公式与已知表格中的数据,可求得eq\o(b,\s\up6(^))=eq\f(\o(,\s\up6(6),\s\do4(i=1))xiyi-6\o(x,\s\up6(-))·\o(y,\s\up6(-)),\o(,\s\up6(6),\s\do4(i=1))x\o\al(2,i)-6\o(x,\s\up6(-))2)=eq\f(58-6×\f(7,2)×\f(13,6),91-6×\b\lc\(\rc\)(\a\vs4\al\co1(\f(7,2)))2)=eq\f(5,7),eq\o(a,\s\up6(^))=eq\o(y,\s\up6(-))-eq\o(b,\s\up6(^))eq\o(x,\s\up6(-))=eq\f(13,6)-eq\f(5,7)×eq\f(7,2)=-eq\f(1,3),所以eq\o(b,\s\up6(^))<b′,eq\o(a,\s\up6(^))>a′.答案:C2.(2013重庆,13分)从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,算得eq\o(,\s\up6(10),\s\do4(i=1))xi=80,eq\o(,\s\up6(10),\s\do4(i=1))yi=20,eq\o(,\s\up6(10),\s\do4(i=1))xiyi=184,eq\o(,\s\up6(10),\s\do4(i=1))xeq\o\al(2,i)=720.(1)求家庭的月储蓄y对月收入x的线性回归方程y=bx+a;(2)判断变量x与y之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.附:线性回归方程y=bx+a中,b=eq\f(\o(,\s\up6(n),\s\do4(i=1))xiyi-n\o(x,\s\up6(-))\o(y,\s\up6(-)),\o(,\s\up6(n),\s\do4(i=1))x\o\al(2,i)-n\o(x,\s\up6(-))2),a=eq\o(y,\s\up6(-))-beq\o(x,\s\up6(-)),其中eq\o(x,\s\up6(-)),eq\o(y,\s\up6(-))为样本平均值,线性回归方程也可写为eq\o(y,\s\up6(^))=eq\o(b,\s\up6(^))x+eq\o(a,\s\up6(^)).解:本题主要考查两个变量的相关性、线性回归方程的求法及预报作用,考查考生的运算求解能力与逻辑思维能力.(1)由题意知n=10,eq\x\to(x)=eq\f(1,n)eq\o(,\s\up6(n),\s\do4(i=1))xi=eq\f(80,10)=8,eq\o(y,\s\up6(-))=eq\f(1,n)eq\o(,\s\up6(n),\s\do4(i=1))yi=eq\f(20,10)=2.又eq\o(,\s\up6(n),\s\do4(i=1))xeq\o\al(2,i)-neq\o(x,\s\up6(-))2=720-10×82=80,eq\o(,\s\up6(n),\s\do4(i=1))xiyi-neq\o(x,\s\up6(-))eq\o(y,\s\up6(-))=184-10×8×2=24,由此可得b=eq\f(\o(,\s\up6(n),\s\do4(i=1))xiyi-n\o(x,\s\up6(-))\o(y,\s\up6(-)),\o(,\s\up6(n),\s\do4(i=1))x\o\al(2,i)-n\o(x,\s\up6(-))2)=eq\f(24,80)=0.3,a=eq\o(y,\s\up6(-))-beq\o(x,\s\up6(-))=2-0.3×8=-0.4,故所求回归方程为y=0.3x-0.4.(2)由于变量y的值随x的值增加而增加(b=0.3>0),故x与y之间是正相关.(3)将x=7代入回归方程可以预测该家庭的月储蓄为y=0.3×7-0.4=1.7(千元).3.(2012湖南,5分)设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为eq\o(y,\s\up6(^))=0.85x-85.71,则下列结论中不正确的是()A.y与x具有正的线性相关关系B.回归直线过样本点的中心(eq\x\to(x),eq\x\to(y))C.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重必为58.79kg解析:由于回归直线的斜率为正值,故y与x具有正的线性相关关系,选项A中的结论正确;回归直线过样本点的中心,选项B中的结论正确;根据回归直线斜率的意义易知选项C中的结论正确;由于回归分析得出的是估计值,故选项D中的结论不正确.答案:D4.(2011山东,5分)某产品的广告费用x与销售额y的统计数据如下表:广告费用x(万元)4235销售额y(万元)49263954根据上表可得回归方程eq\o(y,\s\up6(^))=eq\o(b,\s\up6(^))x+eq\o(a,\s\up6(^))中的eq\o(b,\s\up6(^))为9.4,据此模型预报广告费用为6万元时销售额为()A.63.6万元 B.65.5万元C.67.7万元 D.72.0万元解析:样本中心点是(3.5,42),则eq\o(a,\s\up6(^))=eq\o(y,\s\up6(-))-eq\o(b,\s\up6(^))eq\o(x,\s\up6(-))=42-9.4×3.5=9.1,所以回归直线方程是eq\o(y,\s\up6(^))=9.4x+9.1,把x=6代入得eq\o(y,\s\up6(^))=65.5.答案:B5.(2011陕西,5分)设(x1,y1),(x2,y2),…,(xn,yn)是变量x和y的n个样本点,直线l是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论中正确的是()A.x和y的相关系数为直线l的斜率B.x和y的相关系数在0到1之间C.当n为偶数时,分布在l两侧的样本点的个数一定相同D.直线l过点(eq\o(x,\s\up6(-)),eq\o(y,\s\up6(-)))解析:回归直线过样本中心点(eq\o(x,\s\up6(-)),eq\o(y,\s\up6(-))).答案:D6.(2011辽宁,5分)调查了某地若干户家庭的年收入x(单位:万元)和年饮食支出y(单位:万元),调查显示年收入x与年饮食支出y具有线性相关关系,并由调查数据得到y对x的回归直线方程:eq\o(y,\s\up6(^))=0.254x+0.321.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加________万元.解析:以x+1代x,得eq\o(y,\s\up6(^))=0.254(x+1)+0.321,与eq\o(y,\s\up6(^))=0.254x+0.321相减可得,年饮食支出平均增加0.254万元.答案:0.2547.(2012福建,12分)某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:单价x(元)88.28.48.68.89销量y(件)908483807568(1)求回归直线方程eq\o(y,\s\up6(^))=bx+a,其中b=-20,a=eq\o(y,\s\up6(-))-beq\o(x,\s\up6(-));(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)解:(1)由于eq\x\to(x)=eq\f(1,6)(x1+x2+x3+x4+x5+x6)=8.5,eq\x\to(y)=eq\f(1,6)(y1+y2+y3+y4+y5+y6)=80.所以a=eq\x\to(y)-beq\x\to(x)=80+20×8.5=250,从而回归直线方程为eq\o(y,\s\up6(^))=-20x+250.(2)设工厂获得的利润为L元,依题意得L=x(-20x+250)-4(-20x+250)=-20x2+330x-1000=-20(x-eq\f(33,4))2+361.25.当且仅当x=8.25时,L取得最大值.故当单价定为8.25元时,工厂可获得最大利润.考点二统计案例1.(2013福建,12分)某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100]分别加以统计,得到如图所示的频率分布直方图.(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率;(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?P(χ2≥k)0.1000.0500.0100.001k2.7063.8416.63510.828附:χ2=eq\f(nn11n22-n12n212,n1+n2+n+1n+2)eq\b\lc\(\rc\)(\a\vs4\al\co1(注:此公式也可以写成K2=\f(nad-bc2,a+bc+da+cb+d)))解:本题主要考查古典概型、抽样方法、独立性检验等基础知识,考查运算求解能力、应用意识,考查必然与或然思想、化归与转化思想等.(1)由已知得,样本中有25周岁以上组工人60名,25周岁以下组工人40名.所以,样本中日平均生产件数不足60件的工人中,25周岁以上组工人有60×0.05=3(人),记为A1,A2,A3;25周岁以下组工人有40×0.05=2(人),记为B1,B2.从中随机抽取2名工人,所有的可能结果共有10种,它们是:(A1,A2),(A1,A3),(A2,A3),(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2).其中,至少1名“25周岁以下组”工人的可能结果共有7种,它们是(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2).故所求的概率P=eq\f(7,10).(2)由频率分布直方图可知,在抽取的100名工人中,“25周岁以上组”中的生产能手有60×0.25=15(人),“25周岁以下组”中的生产能手有40×0.375=15(人),据此可得2×2列联表如下:生产能手非生产能手合计25周岁以上组15456025周岁以下组152540合计3070100所以得χ2=eq\f(nad-bc2,a+bc+da+cb+d)=eq\f(100×15×25-15×452,60×40×30×70)=eq\f(25,14)≈1.79.因为1.79<2.706,所以没有90%的把握认为“生产能手与工人所在的年龄组有关”.2.(2010新课标全国,12分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:性别是否需要志愿者男女需要4030不需要160270(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由.附:P(K2≥k)0.0500.0100.001k3.8416.63510.828K2=eq\f(nad-bc2,a+bc+da+cb+d)解:(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024燕山郊野体育公园体育赛事转播权及广告招商合同3篇
- 强迫症健康宣教
- 中医针灸跟诊心得医德仁心
- 10 日月潭(说课稿)2024-2025学年统编版语文二年级上册
- 18牛和鹅说课稿-2024-2025学年四年级上册语文统编版
- 2024影楼与摄影师长期合作协议范本3篇
- 2024技术转让合同约定的技术成果交付和保密
- 12 家乡的喜与忧(说课稿)2023-2024学年统编版道德与法治四年级下册
- 2024年版餐饮行业劳动协议范例版B版
- 2025年度腻子行业市场调研与分析合同3篇
- 广东省深圳市(2024年-2025年小学四年级语文)统编版期末考试(上学期)试卷及答案
- 2024小学数学义务教育新课程标准(2022版)必考题库与答案
- 微型顶管工艺简介
- 服务基层行资料(药品管理)
- 小学三年级数学下册计算题大全(每日一练共25份)
- 2024年中考数学压轴题:圆与相似及三角函数综合问题(教师版含解析)
- 安徽省2023-2024学年七年级上学期期末数学试题(原卷版)
- EPC项目机电安装专业工程重难点分析及经验交流
- 2023-2024学年江苏省连云港市赣榆区九年级(上)期末英语试卷
- 大型活动联合承办协议
- 2024年吉林高考语文试题及答案 (2) - 副本
评论
0/150
提交评论