专题08 圆的相关证明与计算(基本性质、三角形相似、锐角三角函数)(解析版)_第1页
专题08 圆的相关证明与计算(基本性质、三角形相似、锐角三角函数)(解析版)_第2页
专题08 圆的相关证明与计算(基本性质、三角形相似、锐角三角函数)(解析版)_第3页
专题08 圆的相关证明与计算(基本性质、三角形相似、锐角三角函数)(解析版)_第4页
专题08 圆的相关证明与计算(基本性质、三角形相似、锐角三角函数)(解析版)_第5页
已阅读5页,还剩49页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题08圆的相关证明与计算(基本性质、与三角形全等相似有关、与锐角函数有关)类型一基本性质有关的1.(2022·湖南省郴州市)如图,在△ABC中,AB=AC.以AB为直径的⊙O与线段BC交于点D,过点D作DE⊥AC,垂足为E,ED的延长线与AB的延长线交于点P.

(1)求证:直线PE是⊙O的切线;

(2)若⊙O的半径为6,∠P=30°,求CE的长.【答案】(1)连接OD,根据AB=AC,OB=OD,得∠ACB=∠ODB,从而OD//AC,由DE⊥AC,即可得PE⊥OD,故PE是⊙O的切线;

(2)连接AD,连接OD,由DE⊥AC,∠P=30°,得∠PAE=60°,又AB=AC,可得△ABC是等边三角形,即可得BC=AB=12,∠C=60°,而AB是⊙O的直径,得∠ADB=90°,可得BD=CD=12BC=6,在Rt△CDE中,即得CE的长是3.

本题考查圆的综合应用,涉及圆的切线,等腰三角形性质及应用,含特殊角的直角三角形三边关系等,解题的关键是判定△ABC是等边三角形.

2.(2022·辽宁省盘锦市)如图,△ABC内接于⊙O,∠ABC=45°,连接AO并延长交⊙O于点D,连接BD,过点C作CE//AD与BA的延长线交于点E.

(1)求证:CE与⊙O相切;

(2)若AD=4,∠D=60°,求线段AB,BC【答案】(1)连接OC,根据圆周角定理得∠AOC=90°,再根据AD//EC,可得∠OCE=90°,从而证明结论;

(2)过点A作AF⊥EC交EC于F,由AD是圆O的直径,得∠ABD=90°,又AD=4,∠D=60°,即得AB=3BD=23,根据∠ABC=45°,知△ABF是等腰直角三角形,AF=BF=22AB=6,又△AOC是等腰直角三角形,OA=OC=2,得AC=22,故3.(2021·山东临沂市·中考真题)如图,已知在⊙O中,,OC与AD相交于点E.求证:(1)AD∥BC(2)四边形BCDE为菱形.

【答案】(1)见解析;(2)见解析【分析】(1)连接BD,根据圆周角定理可得∠ADB=∠CBD,根据平行线的判定可得结论;(2)证明△DEF≌△BCF,得到DE=BC,证明四边形BCDE为平行四边形,再根据得到BC=CD,从而证明菱形.【详解】解:(1)连接BD,∵,∴∠ADB=∠CBD,∴AD∥BC;

(2)连接CD,∵AD∥BC,∴∠EDF=∠CBF,∵,∴BC=CD,∴BF=DF,又∠DFE=∠BFC,∴△DEF≌△BCF(ASA),∴DE=BC,∴四边形BCDE是平行四边形,又BC=CD,∴四边形BCDE是菱形.【点睛】本题考查了垂径定理,圆周角定理,弧、弦、圆心角的关系,全等三角形的判定和性质,菱形的判定,解题的关键是合理运用垂径定理得到BF=DF.4.(2021·四川南充市·中考真题)如图,A,B是上两点,且,连接OB并延长到点C,使,连接AC.(1)求证:AC是的切线.(2)点D,E分别是AC,OA的中点,DE所在直线交于点F,G,,求GF的长.【答案】(1)见解析;(2)2【分析】(1)先证得△AOB为等边三角形,从而得出∠OAB=60°,利用三角形外角的性质得出∠C=∠CAB=30°,由此可得∠OAC=90°即可得出结论;(2)过O作OM⊥DF于M,DN⊥OC于N,利用勾股定理得出AC=,根据含30°的直角三角形的性质得出DN=,再根据垂径定理和勾股定理即可求出GF的长.【详解】(1)证明:∵AB=OA,OA=OB∴AB=OA=OB∴△AOB为等边三角形∴∠OAB=60°,∠OBA=60°∵BC=OB∴BC=AB∴∠C=∠CAB又∵∠OBA=60°=∠C+∠CAB∴∠C=∠CAB=30°∴∠OAC=∠OAB+∠CAB=90°∴AC是⊙O的切线;(2)∵OA=4∴OB=AB=BC=4∴OC=8∴AC===∵D、E分别为AC、OA的中点,∴OE//BC,DC=过O作OM⊥DF于M,DN⊥OC于N则四边形OMDN为矩形∴DN=OM在Rt△CDN中,∠C=30°,∴DN=DC=∴OM=连接OG,∵OM⊥GF∴GF=2MG=2==2【点睛】本题考查了切线的判定、垂径定理、等边三角形的性质和判定,熟练掌握相关的知识是解题的关键.5.(2021·安徽中考真题)如图,圆O中两条互相垂直的弦AB,CD交于点E.(1)M是CD的中点,OM=3,CD=12,求圆O的半径长;(2)点F在CD上,且CE=EF,求证:.【答案】(1);(2)见解析.【分析】(1)根据M是CD的中点,OM与圆O直径共线可得,平分CD,则有,利用勾股定理可求得半径的长;(2)连接AC,延长AF交BD于G,根据,,可得,,利用圆周角定理可得,可得,利用直角三角形的两锐角互余,可证得,即有.【详解】(1)解:连接OC,∵M是CD的中点,OM与圆O直径共线∴,平分CD,.在中.∴圆O的半径为(2)证明:连接AC,延长AF交BD于G.,又在中【点睛】本题考查了垂径定理,圆周角定理,直角三角形的两锐角互余,勾股定理等知识点,熟练应用相关知识点是解题的关键.6.(2021·浙江中考真题)如图,已知是⊙的直径,是所对的圆周角,.(1)求的度数;(2)过点作,垂足为,的延长线交⊙于点.若,求的长.【答案】(1);(2)【分析】(1)连结,根据圆周角性质,得;根据直径所对圆周角为直角、直角三角形两锐角互余的性质计算,即可得到答案;(2)根据含角的直角三角形性质,得;根据垂径定理、特殊角度三角函数的性质计算,即可得到答案.【详解】(1)连结,是的直径,,(2),,∴,,且是直径.【点睛】本题考查了圆、含角的直角三角形、三角函数的知识;解题的关键是熟练掌握圆周角、垂径定理、含角的直角三角形、三角函数、直角三角形两锐角互余的性质,从而完成求解.7.(2021·湖南中考真题)如图,是的内接三角形,是的直径,点是的中点,交的延长线于点.(1)求证:直线与相切;(2)若的直径是10,,求的长.【答案】(1)见解析;(2).【分析】(1)连接OD,由点D是的中点得OD⊥BC,由DE//BC得OD⊥DE,由OD是半径可得DE是切线;(2)证明△ODE是等腰直角三角形,可求出OE的长,从而可求得结论.【详解】解:(1)连接OD交BC于点F,如图,∵点是的中点,∴OD⊥BC,∵DE//BC∴OD⊥DE∵OD是的半径∴直线与相切;(2)∵AC是的直径,且AB=10,∴∠ABC=90°,∵OD⊥BC∴∠OFC=90°∴OD//AB∴∵∴∴由勾股定理得,∴.【点睛】此题主要考查了切线的判定与性质的综合运用,熟练掌握切线的判定与性质是解答此题的关键.8.(2021·湖南张家界市·中考真题)如图,在中,,,以点为圆心,为半径的圆交的延长线于点,过点作的平行线,交于点,连接.(1)求证:为的切线;(2)若,求弧的长.【答案】(1)见解析;(2)【分析】(1)连接OB,先根据直角三角形的性质得到∠AOB=60°,再运用平行线的性质结合已知条件可得,再证明可得即可;(2)先求出∠COD,然后再运用弧长公式计算即可.【详解】(1)证明:连接∵,∴又∵∴∴∴又∵∴∴又∵点在上∴是的切线;(2)∵∴∴.【点睛】本题主要考查了圆的切线的证明、弧长公式等知识点,掌握圆的切线的证明方法成为解答本题的关键.9.(2020•齐齐哈尔)如图,AB为⊙O的直径,C、D为⊙O上的两个点,AC=CD=DB,连接AD,过点D作DE⊥AC交(1)求证:DE是⊙O的切线.(2)若直径AB=6,求AD的长.【分析】(1)连接OD,根据已知条件得到∠BOD=13×180°=60°,根据等腰三角形的性质得到∠ADO=∠DAB=30°,得到∠EDA=60°,求得OD(2)连接BD,根据圆周角定理得到∠ADB=90°,解直角三角形即可得到结论.【解析】(1)证明:连接OD,∵AC=∴∠BOD=13×180∵CD=∴∠EAD=∠DAB=12∠BOD∵OA=OD,∴∠ADO=∠DAB=30°,∵DE⊥AC,∴∠E=90°,∴∠EAD+∠EDA=90°,∴∠EDA=60°,∴∠EDO=∠EDA+∠ADO=90°,∴OD⊥DE,∴DE是⊙O的切线;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∵∠DAB=30°,AB=6,∴BD=12AB=∴AD=62-10.(2020•深圳)如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.(1)求证:AE=AB;(2)若AB=10,BC=6,求CD的长.【分析】(1)证明:连接AC、OC,如图,根据切线的性质得到OC⊥CD,则可判断OC∥AD,所以∠OCB=∠E,然后证明∠B=∠E,从而得到结论;(2)利用圆周角定理得到∠ACB=90°,则利用勾股定理可计算出AC=8,再根据等腰三角形的性质得到CE=BC=6,然后利用面积法求出CD的长.【解析】(1)证明:连接AC、OC,如图,∵CD为切线,∴OC⊥CD,∴CD⊥AD,∴OC∥AD,∴∠OCB=∠E,∵OB=OC,∴∠OCB=∠B,∴∠B=∠E,∴AE=AB;(2)解:∵AB为直径,∴∠ACB=90°,∴AC=10∵AB=AE=10,AC⊥BE,∴CE=BC=6,∵12CD•AE=12AC∴CD=6×811.(2020•陕西)如图,△ABC是⊙O的内接三角形,∠BAC=75°,∠ABC=45°.连接AO并延长,交⊙O于点D,连接BD.过点C作⊙O的切线,与BA的延长线相交于点E.(1)求证:AD∥EC;(2)若AB=12,求线段EC的长.【分析】(1)连接OC,由切线的性质可得∠OCE=90°,由圆周角定理可得∠AOC=90°,可得结论;(2)过点A作AF⊥EC交EC于F,由锐角三角函数可求AD=83,可证四边形OAFC是正方形,可得CF=AF=43,由锐角三角函数可求EF=12,即可求解.【解析】证明:(1)连接OC,∵CE与⊙O相切于点C,∴∠OCE=90°,∵∠ABC=45°,∴∠AOC=90°,∵∠AOC+∠OCE=180°,∴∴AD∥EC(2)如图,过点A作AF⊥EC交EC于F,∵∠BAC=75°,∠ABC=45°,∴∠ACB=60°,∴∠D=∠ACB=60°,∴sin∠ADB=AB∴AD=12×23=∴OA=OC=43,∵AF⊥EC,∠OCE=90°,∠AOC=90°,∴四边形OAFC是矩形,又∵OA=OC,∴四边形OAFC是正方形,∴CF=AF=43,∵∠BAD=90°﹣∠D=30°,∴∠EAF=180°﹣90°﹣30°=60°,∵tan∠EAF=EF∴EF=3AF=12∴CE=CF+EF=12+43.类型二与三角形全等、相似有关的12.(2022·辽宁省营口市)如图,在△ABC中,AB=AC,以AB为直径作⊙O与AC交于点E,过点A作⊙O的切线交BC的延长线于点D.

(1)求证:∠D=∠EBC;

(2)若CD=2BC,AE=3,求⊙O的半径.【答案】(1)根据切线的性质可得∠DAO=90°,从而可得∠D+∠ABD=90°,根据直径所对的圆周角是直角可得∠BEC=90°,从而可得∠ACB+∠EBC=90°,然后利用等腰三角形的性质可得∠ACB=∠ABC,从而利用等角的余角相等即可解答;

(2)根据已知可得BD=3BC,然后利用(1)的结论可得△DAB∽△BEC,从而利用相似三角形的性质可得AB=3EC,然后根据AB=AC,进行计算即可解答.

本题考查了圆周角定理,等腰三角形的性质,切线的性质,相似三角形的判定与性质,熟练掌握切线的性质,以及相似三角形的判定与性质是解题的关键.

13.(2022·北部湾)如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE⊥AB,垂足为E,延长BA交⊙O于点F.(1)求证:DE是⊙O的切线(2)若AEDE=23,AF=10【答案】(1)证明:连接OD;∵OD=OC,∴∠C=∠ODC,∵AB=AC,∴∠B=∠C,∴∠B=∠ODC,∴OD∥AB,∴∠ODE=∠DEB;∵DE⊥AB,∴∠DEB=90°,∴∠ODE=90°,即DE⊥OD,∴DE是⊙O的切线(2)解:连接CF,由(1)知OD⊥DE,∵DE⊥AB,∴OD∥AB,∵OA=OC,∴BD=CD,即OD是△ABC的中位线,∵AC是⊙O的直径,∴∠CFA=90°,∵DE⊥AB,∴∠BED=90°,∴∠CFA=∠BED=90°,∴DE∥CF,∴BE=EF,即DE是△FBC的中位线,∴CF=2DE,∵AEDE=∴设AE=2x,DE=3k,CF=6k,∵AF=10,∴BE=EF=AE+AF=2k+10,∴AC=BA=EF+AE=4k+10,在Rt△ACF中,由勾股定理,得AC2=AF2+CF2,即(4k+10)2=102+(6k)2,解得:k=4,∴AC=4k+10=4×4+10=26,∴OA=13,即⊙O的半径为13.【知识点】平行线的判定与性质;等腰三角形的性质;圆周角定理;切线的判定;三角形的中位线定理【解析】【分析】(1)连接OD,根据等腰三角形的性质可得∠C=∠ODC,∠B=∠C,则∠B=∠ODC,推出OD∥AB,由平行线的性质可得∠ODE=∠DEB=90°,即DE⊥OD,据此证明;(2)连接CF,由(1)知OD⊥DE,则OD∥AB,易得OD是△ABC的中位线,根据圆周角定理可得∠CFA=90°,根据垂直的概念可得∠BED=90°,则DE∥CF,推出DE是△FBC的中位线,得CF=2DE,设AE=2x,DE=3k,CF=6k,则BE=EF=2k+10,AC=BA=4k+10,根据勾股定理可得k的值,然后求出AC、OA,据此可得半径.14.(2021·江苏无锡市·中考真题)如图,四边形内接于,是的直径,与交于点E,切于点B.(1)求证:;(2)若,,求证:.【答案】(1)见详解;(2)见详解【分析】(1)由圆周角定理的推论,可知∠ABC=90°,由切线的性质可知∠OBP=90°,进而即可得到结论;(2)先推出,从而得∠AOB=40°,继而得∠OAB=70°,再推出∠CDE=70°,进而即可得到结论.【详解】证明:(1)∵是的直径,∴∠ABC=90°,∵切于点B,∴∠OBP=90°,∴,∴;(2)∵,,∴,∵OB=OC,∴,∴∠AOB=20°+20°=40°,∵OB=OA,∴∠OAB=∠OBA=(180°-40°)÷2=70°,∴∠ADB=∠AOB=20°,∵是的直径,∴∠ADC=90°,∴∠CDE=90°-20°=70°,∴∠CDE=∠OAB,∵,∴,∴.【点睛】本题主要考查圆的性质以及相似三角形的判定定理,掌握圆周角定理的推论,相似三角形的判定定理,切线的性质定理,是解题的关键.15.(2020•衢州)如图,△ABC内接于⊙O,AB为⊙O的直径,AB=10,AC=6,连结OC,弦AD分别交OC,BC于点E,F,其中点E是AD的中点.(1)求证:∠CAD=∠CBA.(2)求OE的长.【分析】(1)利用垂径定理以及圆周角定理解决问题即可.(2)证明△AEC∽△BCA,推出CEAC=AC【解析】(1)证明:∵AE=DE,OC是半径,∴AC=∴∠CAD=∠CBA.(2)解:∵AB是直径,∴∠ACB=90°,∵AE=DE,∴OC⊥AD,∴∠AEC=90°,∴∠AEC=∠ACB,∴△AEC∽△BCA,∴CEAC∴CE6∴CE=3.6,∵OC=12AB=∴OE=OC﹣EC=5﹣3.6=1.4.16.(2020•铜仁市)如图,AB是⊙O的直径,C为⊙O上一点,连接AC,CE⊥AB于点E,D是直径AB延长线上一点,且∠BCE=∠BCD.(1)求证:CD是⊙O的切线;(2)若AD=8,BECE=1【分析】(1)连接OC,根据圆周角定理得到∠ACB=90°,根据余角的性质得到∠A=∠ECB,求得∠A=∠BCD,根据等腰三角形的性质得到∠A=∠ACO,等量代换得到∠ACO=∠BCD,求得∠DCO=90°,于是得到结论;(2)设BC=k,AC=2k,根据相似三角形的性质即可得到结论.【解析】(1)证明:连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∵CE⊥AB,∴∠CEB=90°,∴∠ECB+∠ABC=∠ABC+∠CAB=90°,∴∠A=∠ECB,∵∠BCE=∠BCD,∴∠A=∠BCD,∵OC=OA,∴∠A=∠ACO,∴∠ACO=∠BCD,∴∠ACO+∠BCO=∠BCO+∠BCD=90°,∴∠DCO=90°,∴CD是⊙O的切线;(2)解:∵∠A=∠BCE,∴tanA=BCAC=tan∠设BC=k,AC=2k,∵∠D=∠D,∠A=∠BCD,∴△ACD∽△CBD,∴BCAC∵AD=8,∴CD=4.17.(2020•衡阳)如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,过点A和点D的圆,圆心O在线段AB上,⊙O交AB于点E,交AC于点F.(1)判断BC与⊙O的位置关系,并说明理由;(2)若AD=8,AE=10,求BD的长.【分析】(1)连接OD,根据平行线判定推出OD∥AC,推出OD⊥BC,根据切线的判定推出即可;(2)连接DE,根据圆周角定理得到∠ADE=90°,根据相似三角形的性质得到AC=325,根据勾股定理得到CD【解析】(1)BC与⊙O相切,理由:连接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODC=90°,∴OD⊥BC,∵OD为半径,∴BC是⊙O切线;(2)连接DE,∵AE是⊙O的直径,∴∠ADE=90°,∵∠C=90°,∴∠ADE=∠C,∵∠EAD=∠DAC,∴△ADE∽△ACD,∴AEAD108∴AC=32∴CD=A∵OD⊥BC,AC⊥BC,∴△OBD∽△ABC,∴ODAC∴532∴BD=12018.(2020•遵义)如图,AB是⊙O的直径,点C是⊙O上一点,∠CAB的平分线AD交BC于点D,过点D作DE∥BC交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)过点D作DF⊥AB于点F,连接BD.若OF=1,BF=2,求BD的长度.【分析】(1)连接OD,由等腰三角形的性质及角平分线的性质得出∠ADO=∠DAE,从而OD∥AE,由DE∥BC得∠E=90°,由两直线平行,同旁内角互补得出∠ODE=90°,由切线的判定定理得出答案;(2)先由直径所对的圆周角是直角得出∠ADB=90°,再由OF=1,BF=2得出OB的值,进而得出AF和BA的值,然后证明△DBF∽△ABD,由相似三角形的性质得比例式,从而求得BD2的值,求算术平方根即可得出BD的值.【解析】(1)连接OD,如图:∵OA=OD,∴∠OAD=∠ADO,∵AD平分∠CAB,∴∠DAE=∠OAD,∴∠ADO=∠DAE,∴OD∥AE,∵DE∥BC,∴∠E=90°,∴∠ODE=180°﹣∠E=90°,∴DE是⊙O的切线;(2)∵AB是⊙O的直径,∴∠ADB=90°,∵OF=1,BF=2,∴OB=3,∴AF=4,BA=6.∵DF⊥AB,∴∠DFB=90°,∴∠ADB=∠DFB,又∵∠DBF=∠ABD,∴△DBF∽△ABD,∴BDBA∴BD2=BF•BA=2×6=12.∴BD=23.19.(2019•陕西)如图,⊙O的半径OA=6,过点A作⊙O的切线AP,且AP=8,连接PO并延长,与⊙O交于点B、D,过点B作BC∥OA,并与⊙O交于点C,连接AC、CD.(1)求证:DC∥AP;(2)求AC的长.【分析】(1)根据切线的性质得到∠OAP=90°,根据圆周角定理得到∠BCD=90°,根据平行线的性质和判定定理即可得到结论;(2)根据勾股定理和相似三角形的判定和性质定理即可得到结论.【解析】(1)证明:∵AP是⊙O的切线,∴∠OAP=90°,∵BD是⊙O的直径,∴∠BCD=90°,∵OA∥CB,∴∠AOP=∠DBC,∴∠BDC=∠APO,∴DC∥AP;(2)解:∵AO∥BC,OD=OB,∴延长AO交DC于点E,则AE⊥DC,OE=12BC,CE=在Rt△AOP中,OP=62+82=由(1)知,△AOP∽△CBD,∴DBOP即1210∴BC=365,DC∴OE=185,CE在Rt△AEC中,AC=A20(2021·云南中考真题)如图,是的直径,点C是上异于A、B的点,连接、,点D在的延长线上,且,点E在的延长线上,且.(1)求证:是的切线:(2)若,求的长.【答案】(1)见解析;(2)【分析】(1)连接OC,根据圆周角定理得到∠ACB=90°,根据等量代换得到∠DCO=90°,即可证明DC是圆O的切线;(2)根据已知得到OA=2DA,证明△DCO∽△DEB,得到,可得DA=EB,即可求出DA的长.【详解】解:(1)如图,连接OC,由题意可知:∠ACB是直径AB所对的圆周角,∴∠ACB=90°,∵OC,OB是圆O的半径,∴OC=OB,∴∠OCB=∠ABC,又∵∠DCA=∠ABC,∴∠DCA=∠OCB,∴∠DCO=∠DCA+∠ACO=∠OCB+∠ACO=∠ACB=90°,∴OC⊥DC,又∵OC是圆O的半径,∴DC是圆O的切线;(2)∵,∴,化简得OA=2DA,由(1)知,∠DCO=90°,∵BE⊥DC,即∠DEB=90°,∴∠DCO=∠DEB,∴OC∥BE,∴△DCO∽△DEB,∴,即,∴DA=EB,∵BE=3,∴DA=EB=,经检验:DA=是分式方程的解,∴DA=.【点睛】本题考查了圆周角定理,相似三角形的判定和性质,切线的判定,正确的作出辅助线,证明切线,得到相似三角形是解题的关键.21.(2021·江苏扬州市·中考真题)如图,四边形中,,,,连接,以点B为圆心,长为半径作,交于点E.(1)试判断与的位置关系,并说明理由;(2)若,,求图中阴影部分的面积.【答案】(1)相切,理由见解析;(2)【分析】(1)过点B作BF⊥CD,证明△ABD≌△FBD,得到BF=BA,即可证明CD与圆B相切;(2)先证明△BCD是等边三角形,根据三线合一得到∠ABD=30°,求出AD,再利用S△ABD-S扇形ABE求出阴影部分面积.【详解】解:(1)过点B作BF⊥CD,∵AD∥BC,∴∠ADB=∠CBD,∵CB=CD,∴∠CBD=∠CDB,∴∠ADB=∠CDB,又BD=BD,∠BAD=∠BFD=90°,∴△ABD≌△FBD(AAS),∴BF=BA,则点F在圆B上,∴CD与圆B相切;(2)∵∠BCD=60°,CB=CD,∴△BCD是等边三角形,∴∠CBD=60°∵BF⊥CD,∴∠ABD=∠DBF=∠CBF=30°,∴∠ABF=60°,∵AB=BF=,∴AD=DF==2,∴阴影部分的面积=S△ABD-S扇形ABE==.【点睛】本题考查了切线的判定,全等三角形的判定和性质,等边三角形的判定和性质,扇形面积,三角函数的定义,题目的综合性较强,难度不小,解题的关键是正确做出辅助线.22.(2020•上海)如图,△ABC中,AB=AC,⊙O是△ABC的外接圆,BO的延长线交边AC于点D.(1)求证:∠BAC=2∠ABD;(2)当△BCD是等腰三角形时,求∠BCD的大小;(3)当AD=2,CD=3时,求边BC的长.【分析】(1)连接OA.利用垂径定理以及等腰三角形的性质解决问题即可.(2)分三种情形:①若BD=CB,则∠C=∠BDC=∠ABD+∠BAC=3∠ABD.②若CD=CB,则∠CBD=∠CDB=3∠ABD.③若DB=DC,则D与A重合,这种情形不存在.分别利用三角形内角和定理构建方程求解即可.(3)如图3中,作AE∥BC交BD的延长线于E.则AEBC=ADDC=23,推出AOOH=AEBH=43,设OB=OA=4a,OH=3a,根据BH2=【解析】(1)证明:连接OA.A∵AB=AC,∴AB=∴OA⊥BC,∴∠BAO=∠CAO,∵OA=OB,∴∠ABD=∠BAO,∴∠BAC=2∠BAD.(2)解:如图2中,延长AO交BC于H.①若BD=CB,则∠C=∠BDC=∠ABD+∠BAC=3∠ABD,∵AB=AC,∴∠ABC=∠C,∴∠DBC=2∠ABD,∵∠DBC+∠C+∠BDC=180°,∴8∠ABD=180°,∴∠C=3∠ABD=67.5°.②若CD=CB,则∠CBD=∠CDB=3∠ABD,∴∠C=4∠ABD,∵∠DBC+∠C+∠CDB=180°,∴10∠ABD=180°,∴∠BCD=4∠ABD=72°.③若DB=DC,则D与A重合,这种情形不存在.综上所述,∠C的值为67.5°或72°.(3)如图3中,作AE∥BC交BD的延长线于E.则AEBC∴AOOH=AEBH=43,设OB=OA∵BH2=AB2﹣AH2=OB2﹣OH2,∴25﹣49a2=16a2﹣9a2,∴a2=25∴BH=5∴BC=2BH=523.(2021·云南中考真题)如图,是的直径,点C是上异于A、B的点,连接、,点D在的延长线上,且,点E在的延长线上,且.(1)求证:是的切线:(2)若,求的长.【答案】(1)见解析;(2)【分析】(1)连接OC,根据圆周角定理得到∠ACB=90°,根据等量代换得到∠DCO=90°,即可证明DC是圆O的切线;(2)根据已知得到OA=2DA,证明△DCO∽△DEB,得到,可得DA=EB,即可求出DA的长.【详解】解:(1)如图,连接OC,由题意可知:∠ACB是直径AB所对的圆周角,∴∠ACB=90°,∵OC,OB是圆O的半径,∴OC=OB,∴∠OCB=∠ABC,又∵∠DCA=∠ABC,∴∠DCA=∠OCB,∴∠DCO=∠DCA+∠ACO=∠OCB+∠ACO=∠ACB=90°,∴OC⊥DC,又∵OC是圆O的半径,∴DC是圆O的切线;(2)∵,∴,化简得OA=2DA,由(1)知,∠DCO=90°,∵BE⊥DC,即∠DEB=90°,∴∠DCO=∠DEB,∴OC∥BE,∴△DCO∽△DEB,∴,即,∴DA=EB,∵BE=3,∴DA=EB=,经检验:DA=是分式方程的解,∴DA=.【点睛】本题考查了圆周角定理,相似三角形的判定和性质,切线的判定,正确的作出辅助线,证明切线,得到相似三角形是解题的关键.类型三与锐角三角函数有关24.(2022·辽宁省铁岭市)如图,△ABC内接于⊙O,AC是⊙O的直径,过OA上的点P作PD⊥AC,交CB的延长线于点D,交AB于点E,点F为DE的中点,连接BF.

(1)求证:BF与⊙O相切;

(2)若AP=OP,cosA=45,AP=4,求BF的长.【答案】(1)连接OB,根据直径所对的圆周角是直角可得∠ABC=90°,从而可得∠ABD=90°,进而利用直角三角形三角形斜边上的中线可得BF=EF=12AD,然后利用等腰三角形的性质可得∠FEB=∠FBE,从而可得∠FBE=∠AEP,最后根据垂直定义可得∠EPA=90°,从而可得∠A+∠AEP=90°,再利用等腰三角形的性质可得∠A=∠OBA,从而可得∠OBA+∠FBE=90°,进而可得∠OBF=90°,即可解答;

(2)在Rt△AEP中,利用锐角三角函数的定义求出AE的长,从而利用勾股定理求出PE的长,然后利用同角的余角相等可得∠AEP=∠C,从而可证△APE∽△DPC,进而利用相似三角形的性质可求出DP的长,最后求出DE的长,即可解答.

本题考查了解直角三角形,切线的判定与性质,圆周角定理,三角形的外接圆与外心,直线与圆的位置关系,熟练掌握解直角三角形,以及切线的判定与性质是解题的关键.

25.(2022·四川省广安市)如图,AB为⊙O的直径,D、E是⊙O上的两点,延长AB至点C,连接CD,∠BDC=∠BAD.

(1)求证:CD是⊙O的切线.

(2)若tan∠BED=23,AC=9,求【答案】(1)连接OD,由圆周角定理得出∠ADB=90°,证出OD⊥CD,由切线的判定可得出结论;

(2)证明△BDC∽△DAC,由相似三角形的性质得出CDAC=BCCD=BDDA=26.(2021·山东菏泽市·中考真题)如图,在中,是直径,弦,垂足为,为上一点,为弦延长线上一点,连接并延长交直径的延长线于点,连接交于点,若.(1)求证:是的切线;(2)若的半径为8,,求的长.【答案】(1)见解析;(2)【分析】(1)连接OE,证明OE⊥EF即可;(2)由证得,运用正弦的概念可得结论.【详解】解:(1)证明:连接OE,如图,∵OA=OE∴∠OAE=∠OEA.∵EF=PF,∴∠EPF=∠PEF∵∠APH=∠EPF,∴∠APH=∠EPF,∴∠AEF=∠APH.∵CD⊥AB,∴∠AHC=90°.∴∠OAE+∠APH=90°.∴∠OEA+∠AEF=90°∴∠OEF=90°∴OE⊥EF.∵OE是的半径∴EF是圆的切线,(2)∵CD⊥AB∴是直角三角形∵∴设,则由勾股定理得,由(1)得,是直角三角形∴∴,即∵∴解得,【点睛】此题主要考查了圆的切线的判定,勾股定理和解直角三角形等知识,熟练掌握切线的判定是解答此题的关键.27.(2022·黔东南)(1)请在图中作出△ABC的外接圆⊙O(尺规作图,保留作图痕迹,不写作法);(2)如图,⊙O是△ABC的外接圆,AE是⊙O的直径,点B是CE的中点,过点B的切线与AC的延长线交于点D.①求证:BD⊥AD;②若AC=6,tan∠ABC=34,求⊙O【答案】(1)解:如下图所示(2)解:①如下图所示,连接OC、OB∵BD是⊙O的切线∴OB⊥BD∵∠CAE是CE对应的圆周角,∠COE是CE对应的圆心角∴∠COE=2∠CAE∵点B是CE的中点∴∠COE=2∠BOE∴∠CAE=∠BOE∴∠CAE=∠BOE∴AD//OB∴BD⊥AD②如下图所示,连接CE∵∠ABC与∠AEC是AC对应的圆周角∴∠ABC=∠AEC∵AE是⊙O的直径∴∠ACE=9∴tan∠AEC=∴CE=8∵A∴AE=10∴⊙O的半径为5.【知识点】圆周角定理;三角形的外接圆与外心;切线的性质;解直角三角形;作图-线段垂直平分线【解析】【解答】(1)∵△ABC的外接圆⊙O的圆心为任意两边的垂直平分线的交点,半径为交点到任意顶点的距离,∴做AB、AC的垂直平分线交于点O,以OB为半径,以O为圆心做圆即可得到△ABC的外接圆;【分析】利用尺规作图分别作出AC,AB的垂直平分线,两垂直平分线交于点O,然后以点O为圆心,OB的长为半径画圆即可.

(2)①连接OC,OB,利用切线的性质可证得OB⊥BD,利用圆周角定理可证得∠COE=2∠CAE,由点B是弧CE的中点,可推出∠CAE=∠BOE,利用平行线的判定定理可证得AD∥OB,由此可证得结论;②连接CE,利用同弧所对的圆周角相等,可证得∠ABC=∠AEC,利用直径所对的圆周角是直角,可推出∠ACE=90°;再利用解直角三角形求出CE的长,利用勾股定理求出AE的长.28.(2022·鄂州)如图,△ABC内接于⊙O,P是⊙O的直径AB延长线上一点,∠PCB=∠OAC,过点O作BC的平行线交PC的延长线于点D.(1)试判断PC与⊙O的位置关系,并说明理由;(2)若PC=4,tanA=12,求△OCD的面积【答案】(1)解:PC与⊙O相切,理由如下:∵AB是圆O的直径,∴∠ACB=90°,∴∠OCB+∠OCA=90°,∵OA=OC,∴∠OCA=∠OAC,∵∠PCB=∠OAC,∴∠PCB=∠OCA,∴∠PCB+∠OCB=∠OCA+∠OCB=90°,即∠PCO=90°,∴PC与⊙O相切(2)解:∵∠ACB=90°,tanA=1∴BCAC∵∠PCB=∠OAC,∠P=∠P,∴△PBC∽△PCA,∴PCPA∴PA=8,∴AB=6,∴OC=OB=3,∴OP=5,∵BC∥OD,∴△PBC∽△POD,∴PBOP=PC∴PD=10,∴CD=6,∴S【知识点】等腰三角形的性质;圆周角定理;切线的判定;相似三角形的判定与性质;锐角三角函数的定义【解析】【分析】(1)由圆周角定理得∠ACB=90°,根据等腰三角形的性质可得∠OCA=∠OAC,结合∠PCB=∠OAC得PCB=∠OCA,结合∠OCB+∠OCA=90°可得∠PCO=90°,据此证明;

(2)根据三角函数的概念可得BCAC=12,易证△PBC∽△PCA,根据相似三角形的性质可得PA、PB,然后求出AB、OP,证明△PBC∽△POD,根据相似三角形的性质可得PD,由PD-PC=CD29.(2022·毕节)如图,在△ABC中,∠ACB=90∘,D是AB边上一点,以BD为直径的⊙O与AC相切于点E,连接DE并延长交BC(1)求证:BF=BD;(2)若CF=1,tan∠EDB=2,求⊙O【答案】(1)证明:连接OE,如下图所示:∵AC为圆O的切线,∴∠AEO=90°,∵AC⊥BC,∴∠ACB=90°,∴OE∥BC,∴∠F=∠DEO,又∵OD=OE,∴∠ODE=∠DEO,∴∠F=∠ODE,∴BD=BF.(2)解:连接BE,如下图所示:由(1)中证明过程可知:∠EDB=∠F,∴tan∠EDB=tan∠F=ECCF,代入数据:∴EC=2,又BD是圆O的直径,∴∠BED=∠BEF=90°,∴∠CEF+∠F=90°=∠CEF+∠CEB,∴∠F=∠CEB,∴tan∠F=tan∠CEB=BCCE,代入数据:∴BC=4,由(1)可知:BD=BF=BC+CF=4+1=5,∴圆O的直径为5.【知识点】等腰三角形的性质;圆周角定理;切线的性质;解直角三角形【解析】【分析】(1)连接OE,利用切线的性质和垂直的定义可证得∠AEO=∠ACB=90°,可推出OE∥BC;再利用平行线的性质可得到∠F=∠DEO,利用等边对等角可证得∠ODE=∠DEO,由此可推出∠F=∠ODE,利用等角对等边,可证得结论.

(2)连接BE,由∠EDB=∠F;再利用解直角三角形可求出EC的长,利用直径所对的圆周角是直角得到BE⊥DF,利用余角的性质可得到∠F=∠CEB,利用解直角三角形求出BC的长;然后根据BD=BF=BC+CF,代入计算求出BD的长30.(2021·四川广元市·中考真题)如图,在Rt中,,是的平分线,以为直径的交边于点E,连接,过点D作,交于点F.(1)求证:是的切线;(2)若,,求线段的长.【答案】(1)证明见详解;(2).【分析】(1)先根据圆周角定理、角平分线定义、平行线性质证明∠EAD=∠FDE,再根据AD为直径,得到∠ADE+∠DAE=90°,进而得到AD⊥FD,问题得证;(2)先求出DE=3,证明△AED≌△ACD,得到DE=DC=3,BC=BD+CD=8,解Rt中求出AC=6,进而得到AE=6,求出,证明△ADE∽△AFD,得到,即可求出.【详解】解:(1)证明:连接DE,∵∴∠CAD=∠CED,∵是的平分线,∴∠CAD=∠EAD,∴∠CED=∠EAD,∵,∴∠CED=∠FDE,∴∠EAD=∠FDE,∵AD为直径,∴∠AED=∠ACD=90°,∴∠ADE+∠DAE=90°,∴∠ADE+∠FDE=90°,即AD⊥FD,又∵为直径,∴是的切线;(2)∵∠AED=90°,∴∠BED=90°,∴,∵∠AED=∠ACD,∠DAE=∠DAC,AD=AD,∴△AED≌△ACD,∴DE=DC=3,∴BC=BD+CD=8,在Rt中,∵,∴设AC=3x,AB=5x,∴,∵x>0,∴x=2,∴AB=5x=10,AC=3x=6,∵△AED≌△ACD,∴AE=AC=6,∴在Rt△ADE中,,∵∠EAD=∠DAF,∠AED=∠ADF=90°,∴△ADE∽△AFD,∴,即,∴.【点睛】本题为圆的综合题,考查了切线的判定,圆的性质,三角函数,相似三角形的判定与性质等知识,根据题意添加辅助线,熟知圆的性质,利用三角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论