版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2014年高考数学命题趋势及备考策略探究
内容提要一、问题提出二、高考命题趋势分析三、高考数学教学策略研究一、问题提出
高考数学教学,极其富有自身特点,它的教学目标已经不同于新授课的教学。提高高考复习效率,提高学生的应试能力,取得满意的考试结果,是摆在高三数学教师面前最突出的问题。1.2009---2013年新课标试卷研究综述二、2014高考命题趋势分析(1)考点统计表(2)近五年试题综述2013年理科卷考点
难度估计
考查能力与意识1共轭复数、复数的运算0.8待定系数法、运算求解能力2程序框图0.9数据处理能力、推理论证能力3平面的基本性质0.9推理论证能力4充要条件、函数的性质0.5数形结合、分类讨论、函数与方程思想等5抽样方法、样本的平均数、方差0.8应用意识6不等式的解法0.6转化与化归思想7极坐标系0.6转化与化归思想8直线斜率、直线与曲线交点0.5数形结合思想、函数与方程思想9平面向量的运算0.2抽象概括能力、推理论证能力10导函数与极值0.1数形结合思想、抽象概括能力、函数与方程思想2013年理科卷考点难度估计考查能力与意识11二项式定理0.6运算求解能力12正余弦定理、解三角形0.5转化与化归思想、运算求解能力13直线与抛物线的位置关系0.4运算求解能力、创新意识14数列的通项0.3逻辑推理能力、归纳推理能力15正方体的截面0.2空间想象能力、推理论证能力2013年理科卷考点难度估计考查能力与意识16三角恒等变换、三角函数的图象与性质0.65运算求解能力17一元二次不等式的解法、导数的应用0.45分类讨论法、函数与方程思想18椭圆的标准方程、几何性质及直线与椭圆的位置关系0.3数形结合思想、运算求解能力19空间直线与直线、直线与平面、平面与平面间的位置关系、空间角的计算0.2空间想象能力、转化与化归思想、推理论证能力20导数的应用、零点存在定理、等比数列求和及不等式的放缩0.1推理论证能力、运算求解能力21古典概型、相互独立事件、对立事件的概率、计数原理及不等式的证明0.1应用意识、创新意识、运算求解能力、抽象概括能力等2012
2011
2010
20091复数的运算复数运算及复数概念复数运算复数四则运算2函数的概念与表示求双曲线的实轴长集合运算、对数不等式交集、绝对值解不等式3程序框图函数的奇偶性平面向量基本知识求双曲线离心率4等比数列的性质简单的线性规划函数周期性、奇偶性不等式性质充要条件5条形统计图圆的极坐标方程求双曲线焦点坐标等差数列通项求和6面面垂直、线线垂直及充要条件等三视图几何体表面积二次函数图像函数的图像7二项式定理全称命题的否定圆的参数方程直线与圆的位置关系线性规划8平面向量的概念及运算子集交集组合计数三视图几何体表面积三角函数式化简性质9抛物线定义、直线与抛物线的位置关系三角函数图象与性质三角函数的性质导数的几何意义10排列与组合导数与函数图象等比数列前n项和性质空间想像与古典概率2012
2011
2010
200911线性规划程序框图全称命题的否定正态分布12三视图二项展开式通项公式二项展开式通项公式极坐标与参数方程13极坐标系平面向量内积运算线性规划、基本不等式程序框图14平面向量的减法、数量积及均值不等式解三角形程序框图向量的几何运算15余弦定理、均值不等式推理论证概率分布及其期望空间点、线、面位置关系2012
2011
2010
200916三角函数的性质、三角恒等变换导数求极值、单调性三角函数向量解三角形三角函数、解三角形17古典概型、分布列、数学期望平行关系证明与体积计算导数求单调区间、极值、证明不等式概率分布列、期望18空间线线、线面、面面间的位置关系,二面角的平面角的计算等比数列性质、通项公式、裂项求和、两角差的正切线面平行、垂直、二面角计算直线与椭圆的位置关系、及等比数列19导函数及其应用不等式证明对数计算求椭圆方程、直线方程、直线与椭圆的位置关系数列的推理和证明、数学归纳法20椭圆方程及其几何性质、直线与椭圆的位置关系互斥事件、独立事件的概率、随机变量分布列与期望、不等式等差数列基本知识与方法,充要条件空间线面位置关系及二面角、体积计算21数列的概念及其性质、不等式及其性质、充要条件等抛物线与求动点的轨迹概率分布与统计函数与导数应用(单调性)
2009年2010年2011年2012年2013年理科0.545
0.640.5270.560.45文科0.4490.530.460.550.47(2)五年试题综述
1结构框架稳定,总体难度相对稳定2贴近教材内容,注重考查基础知识和通性通法3主干知识是试卷的主体,重点知识不回避,且保持稳定4.强调知识之间的内在联系,在知识交汇处命题,变换命题视角,重新组合知识达到适度创新5.突出数学思想与方法的考查,着力考查分析问题的能力、利用所学知识解决问题的能力和意识6.逐步与新课程理念接轨,注重与大学的学习接轨7.注重引导中学数学教学:夯实基础,提高能力
总的命题趋势分析
稳定为主,适度创新1.总的原则不会变:“有助于高等学校选拔新生,有利于中学实施素质教育和对学生创新意识、实践能力的培养”,命题的原则“考查基础知识的同时,注重考查能力.”2.命题的指导思想会延续:“稳中求变,变中求新,新中求活,活中突能”的命题的指导思想会延续,这符合“有助于高等学校选拔新生,有利于中学实施素质教育和对学生创新意识、实践能力的培养”高考宗旨,符合新课标的要求,符合安徽省中学数学教学的实际。二、2014高考命题趋势分析2014年高考命题趋势分析3.试题命制的要求与策略不会变:(1)以能力(空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识.)立意,全面考查数学思想和方法(主要是配方法、换元法、消元法、待定系数法、数学归纳法(理)以及常用的逻辑方法如分析法、综合法、类比与归纳法、反证法,对数学思想的考查重在函数与方程思想(如函数综合题,解析几何综合题)、化归与转化思想、数形结合思想、分类与整合思想、必然与或然思想、算法思想等)。
(2)重点知识重点考查,并达到必要的深度,非主干知识渗透考查。注意在知识交汇处命题,强调知识之间的交叉和综合,解答题更加强调主干知识的融合。(3)倡导通性通法,注重考查应用意识和创新意识,重视探究,多角度、多层次检测数学能力和素质。2014年高考命题趋势分析4.构成试卷的主体不会变:支撑高中数学的主干知识,如函数与导数、三角函数、数列、不等式、直线和平面、直线与圆、圆锥曲线、统计与概率等依然是整份试卷的主体内容。5.命题的风格与特点不会变:紧扣新课标与考试说明,知识点覆盖全面,试题不偏不怪,难度适中,试题背景公正(以学生熟悉的知识考查学生的能力),文理科试题差异明显,稳定为主,适度创新。6.试卷的难度、长度基本保持稳定。7.试卷结构(12-4-6,11-5-6,12-4-6,10-5-6)在摸索中逐步调整,渐渐形成符合安徽实际且具安徽特色的试卷。2014年高考命题趋势分析
今年我省数学《考试说明》变化微小。我估计仅在题型示例中,对部分样题进行更换,更换试题明显更灵活,数学思想、应用意识、创新意识及几大数学能力要求体现更到位。这可能预示着今年我省高考数学试题灵活性继续增强。2013安徽省数学考试说明的说明2014年高考命题趋势分析
2013年说明变化1.降低试卷入手的高度,提高大专和三本的分数线;2.开发利用题型功能,降低部分试题难度,提高区分度,在各题型内设立把关题(多题把关),控制满分率;3.减轻学业负担,首先从课程内容入手,课程内容又受知识系统的影响,故而必须减少非主干知识的内容,或降低非主干知识的考试要求,保持其基础性;适当增加选修内容,选修内容约占35%;主干知识难度不能降.2013安徽省数学考试说明的说明2014年高考命题趋势分析
2013年说明变化4.删除:几何概型,超几何分布,参数方程几何意义。淡化:二分法,算法语句,随机数模拟,定积分,空间坐标系(文),条件概率,列联表,回归方程(含数据预处理)5.可利用<考试说明>后面的样例对考试范围”踩边踩界”,准确把握考试要求.6.统计案例(对文科也作要求)了解下列一些常见的统计方法:文科+“并能应用这些方法解决一些实际问题”一句(2011年安徽考察了解答题)2013安徽省数学考试说明的说明2014年高考命题趋势分析
2013年说明变化7.证明不等式的基本方法了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.(从2010年开始安徽高考理科试卷明显强化了了对不等式的考查)内容要求:(十三)不等式(文理相同)4.基本不等式:(2)会用基本不等式解决简单的最大(小)值问题。8.容易题、中等题和难题的比例一般为理科3:5:2;文科6:3:12013安徽省数学考试说明的说明
安徽高考考试说明·文理科数学区别
安徽高考考试说明·文理科数学区别文理区别三、高考数学教学策略研究1、收集专家的意见和高考命题方面的信息
做好带领学生复习的教学设计,必能斟酌损益,补缺堵漏,提高复习时的时间利用率,增强带领学生复习是针对性,提高复习效率。三、高考数学教学策略研究2、悉心研读数学高考说明
①要认真研读新高考考试说明,熟知进入课程的每一个知识点所属的相应的目标层次,对知识点的要求是了解、理解,还是掌握、运用。②在新高考中,还要分析进入考试说明的哪些知识点的考查与原来考试大纲考查的要求有区别。③通过仔细研读新高考说明,明确这些关于考试方向性的目标至关重要,教师在选择复习内容,配置复习题型,强调重点程度,设定教学手段。三、高考数学教学策略研究2、悉心研读数学高考说明
④仔细揣摩专家的意见,就会依据课程培养目标的要求,依据考试说明中的考试目标的要求,结合相关高层次会议所形成的理念,由此形成高考复习的体系结构:考试的目标要求;考试的内容要求;相关进入考试知识点的层次要求。三、高考数学教学策略研究例:(2013年安徽卷20题)设函数,证明:(Ⅰ)对每个,存在唯一的,满足;(Ⅱ)对任意,由(Ⅰ)中构成的数列满足。三、高考数学教学策略研究例1.(2011年安徽省理科18题)
高考冲刺数学复习策略三、高考数学教学策略研究例2.(2011年安徽省理科19题)
高考冲刺数学复习策略例2.(2011年安徽省理科19题)
三、高考数学教学策略研究对数学能力的考查,强调“以能力立意”。就是以数学知识为载体,从问题入手,把握学科的整体意义。用统一的数学观点组织材料,侧重体现对知识的理解和应用,尤其是综合和灵活的应用,以此来检测考生将知识迁移到不同情境中去的能力,从而检测出考生个体理性的广度和深度,以及进一步学习的潜能。三、高考数学教学策略研究例3.(2011年广东省理科19题)
三、高考数学教学策略研究例3.(2011年广东省理科19题)
例.(2013年安徽卷21题)某高校数学系计划在周六和周日各举行一次主题不同的心理测试活动,分别由李老师和张老师负责,已知该系共有n位学生,每次活动均需该系k位学生参加(n和k都是固定的正整数)。假设李老师和张老师分别将各自活动通知的信息独立、随机地发给该系k位学生,且所发信息都能收到。记该系收到李老师或张老师所发活动通知信息的学生人数为x(Ⅰ)求该系学生甲收到李老师或张老师所发活动通知信息的概率;(Ⅱ)求使P(x=m)取得最大值的整数。三、高考数学教学策略研究三、高考数学教学策略研究从学科的整体高度和思维价值的高度考虑问题,在知识网络的交汇点处设计试题,使对数学基础知识的考查达到必要的深度。解析几何的教学要求突出数形结合的思想,强调的是用代数的手段研究直线与圆锥曲线的位置关系。一片喧哗:解析几何怎么能这么考?代表性的观点认为:解析几何试题应该体现解析几何研究的两大问题------以点的运动性质确定轨迹方程,以轨迹方程反过来更深入地研究曲线。2009年安徽卷理科第20题2009年安徽卷理科第20题点在椭圆上,直线与直线垂直,O为坐标原点,直线OP的倾斜角为,直线的倾斜角为(I)证明:点是椭圆与直线的唯一交点;(II)证明:构成等比数列.第(I)问即是证明直线与椭圆切于点P,一个自然的思路便是求解题方法是联立直线与椭圆方程得关于x的一元二次方程,计算得出,或解出说明了方程有唯一解。本解法充分地体现了方程与函数的思想思路1:假设直线与椭圆还有异于点P的另一个点Q,设为,代入的方程,得,即,故,所以点P与点Q重合。本解法以三角函数为工具,通过解三角方程,证明了点P与点Q的统一。思路2:由于椭圆上的点P位于第一象限,故将椭圆方程转化为函数表达式,通过求导,得直线的斜率,代入过点P的切线方程式:化简得,即为过点P的切线方程。本解法又是函数与方程思想的典型应用思路3:问题(II)因为直线的斜率为所以的斜率为故构成等比数列。这是数形结合的思想与方程思想的完美结合。三、高考数学教学策略研究让我们来看看新课程标准及考试说明对圆锥曲线的要求:(1)了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用。(2)掌握椭圆(理:抛物线)的定义、几何图形、标准方程及简单的集合性质(范围、对称性、顶点、离心率)。(3)了解双曲线(文:抛物线)的定义、几何图形和标准方程,知道其简单的几何性质(范围、对称性、顶点、离心率、渐近线)。(4)了解圆锥曲线的简单应用。(5)理解数形结合的思想。圆锥曲线的教学应突出的是圆锥曲线的定义、几何图形、标准方程及其几何性质;强调的是理解数形结合的思想;要渗透的是用代数的方法研究几何问题的思想---即解析的思想,因此要重点掌握方程的思想和曲线与方程的关系,淡化数值计算。三、高考数学教学策略研究试题评价:
没有了繁难的数据处理,体现了解析几何的本质,突出了根本的思想和方法,是一道正本清源、回归本质、纠偏校正、引领方向的导向题。新课标提示:
解析几何要强调数形结合的思想、强调坐标法!淡化数值计算。
三、高考数学教学策略研究三、高考数学教学策略研究2、悉心研读数学高考说明
⑤关注考试范围与要求中有但在近几年高考试题中还没有出现的知识点。
必修1:幂函数、二分法、函数值域、函数模型的应用;必修2:空间几何体的直观图、球的面积与体积、空间直角坐标系;必修3:系统抽样、对立事件、互斥事件;必修4:任意角三角函数定义、扇形面积、正切函数图像、两倍角的正切公式;必修5:解三角形的实际应用、数列求和;选修2-1:全称量词与特称量词;选修2-2:类比推理、复合函数求导、导数与切线、共轭复数;选修2-3:两点分布、二项分布、独立性检验;选修4-4:椭圆(双曲线、抛物线)的参数方程、压缩变换、柱坐标系与球坐标系等。三、高考数学教学策略研究2、悉心研读数学高考说明
⑥关注没有进入数学高考说明的初中知识如二次函数、二次方程,几何中的勾股定理,全等、相似、等腰三角形、直角三角形,线段垂直平分线、角平分线的性质,圆的相关性质等。
三、高考数学教学策略研究例4.(2010年安徽省文科21题)
高考冲刺数学复习策略例4.(2010年安徽省文科21题)
三、高考数学教学策略研究例5.(2010年安徽省理科19题)
高考冲刺数学复习策略例5.(2010年安徽省理科19题)
三、高考数学教学策略研究2、悉心研读数学高考说明
⑦理科的高中立体几何教学,一定不能只是对向量(特别是建系)的方法情有独钟。形成了过于依赖向量方法的心理。空间想象能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中的基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象的揭示问题的本质。三、高考数学教学策略研究2、悉心研读数学高考说明
⑧关注具有高等数学背景的高考数学试题
三、高考数学教学策略研究三、高考数学教学策略研究三、高考数学教学策略研究三、高考数学教学策略研究三、高考数学教学策略研究2、悉心研读数学高考说明
⑨通过研究高考说明中的题型示例来探索命题方向
体现我省高考数学命题组的人文关怀
为了更好地理解考试内容和要求,特编制下列题型示例(题型示例基本由近年高考试题组成)供参考,所列样题力求体现试题的各种题型及难度,它与考试时试题的题序安排、考查内容、难度没有对应关系.三、高考数学教学策略研究重点知识、主干内容重点考查例如函数、不等式考点在选择题30题中就占了13题,比重大。
三、高考数学教学策略研究例:函数在区间上的图像如图所示,则的值可能是()A.B. C. D.(2011年安徽卷10)高考冲刺数学复习策略高考冲刺数学复习策略观察图象易知,,f(x)在上先增后减,但在上有增有减且不对称。再分别对各选项检验。答案B。
高考冲刺数学复习策略
试题说明:本题以函数图像为呈现形式,考查函数的图像与性质、导数的几何意义与计算、极值点的性质与判断.考查学生对函数图像的观察与理解,特别是把握函数图像本质特征的能力和直觉思维能力,考查学生理性思维品质批判性、灵活性和广阔性.解题时既可以通过对m、n分别赋值进行排除作答,也可以利用导数工具刻画函数图像,进而作出判断.高考冲刺数学复习策略选择、填空题中的创新型试题例(2011年安徽卷15题)在平面直角坐标系中,如果x与y都是整数,就称点(x,y)为整点.下列命题中正确的是
(写出所有正确命题的编号).
①存在这样的直线,既不与坐标轴平行又不经过任何整点
②如果k与b都是无理数,则直线y=kx+b不经过任何整点
③直线l经过无穷多个整点,当且仅当l经过两个不同的整点
④直线y=kx+b经过无穷多个整点的充分必要条件是:k与b都是有理数
⑤存在恰经过一个整点的直线
答案:①③⑤.试题说明:本题通过定义“整点”这一新概念设置新颖的数学情境,对试题中各命题真假的判断,考查考生数学直觉与思维的灵活性、抽象概括与推理论证能力、自主性与探究性学习能力.解题时既可以用代数方法加以求解,又可以借助几何直观加以判断.试题设问有较高的综合度,考查思维的发散性和创新意识.要求考生有较强的思辨能力.高考冲刺数学复习策略例(2012年安徽卷14题)若平面向量满足:;则的最小值是高考冲刺数学复习策略解析:(解法很多)高考冲刺数学复习策略例(2012年安徽卷10题)6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品,已知6位同学之间共进行了13次交换,则收到4份纪念品的同学人数为()A.1或3B.1或4C.2或3D.2或4高考冲刺数学复习策略【解析】选D①设仅有甲与乙,甲与丙没交换纪念品,则收到4份纪念品的同学人数为2人②设仅有甲与乙,丙与丁没交换纪念品,则收到4份纪念品的同学人数为4人高考冲刺数学复习策略2.落实基础不放松高考冲刺阶段的数学复习,也需要不断的回归课本,反复回顾基础知识、基本定义、基本方法和基本技巧。只有这样,高考试题中的大部分基本题就十分有把握,且能够迅速解决。高考冲刺数学复习策略【基础题型】高考冲刺数学复习策略【解题探究】本题考查了正态曲线的特征的有关问题。正态分布是日常生活中一种常见的分布,要了解正态曲线的特征,会进行非标准正态分布和标准正态分布之间的转化,能够进行有关的数值计算.高考冲刺数学复习策略例2:设2a+3a=13,则二项式展开式中含
x2项的系数______.解析因为2a+3a=13,经验可知:a=2,高考冲刺数学复习策略【基础题型】
则3-r=2,即r=1,所以答案480【解题探究】本小题考查了方程的概念及二项式项的系数的有关计算,在解答这类问题时,应首先求出方程的解,再根据二项式通项公式寻求相关项的计算,确定出参数,再代入求解直至结论.高考冲刺数学复习策略【基础题型】高考冲刺数学复习策略
给定两个长度为1的平面向量和,它们的夹角为.如图所示,点C在以O为圆心的圆弧上变动.若其中,则的最大值是______.ABCO
高考冲刺数学复习策略【基础题型】例4(09年安徽理科14)
解:以O为原点OA所在的直线为x轴,建立平面直角坐标系。点C在单位圆弧上,则点ABCO
Oxy4.(2009·全国Ⅰ)设函数f(x)的定义域为R,若f(x+1)
与f(x-1)都是奇函数,则()
A.f(x)是偶函数B.f(x)是奇函数
C.f(x)=f(x+2)D.f(x+3)是奇函数解析由函数y=f(x+1)是奇函数知,
f(x+1)=-f(-x+1),①
由函数y=f(x-1)是奇函数知,
f(x-1)=-f(-x-1).②
由①知,f(-x)=-f(2+x),
由②知,f(-x)=-f(x-2),高考冲刺数学复习策略∴f(2+x)=f(x-2),即f(x+4)=f(x).∴函数y=f(x)是以4为周期的函数,由②知,f(x-1+4)=-f(-x-1+4).∴f(x+3)=-f(-x+3),∴函数f(x+3)是奇函数.答案
D5.(2009·全国Ⅱ)函数的图象()
A.关于原点对称B.关于直线y=-x对称
C.关于y轴对称D.关于直线y=x对称解析由于定义域为(-2,2)关于原点对称,又
f(x)=-f(-x),故函数为奇函数,图象关于原点对称.
A例6:(2009·安徽)已知函数f(x)在R上满足f(x)=2f(2-x)-x2+8x-8,则曲线y=f(x)在点(1,f(1))处的切线方程是()A.y=2x-1B.y=xC.y=3x-2D.y=-2x+3解析由f(x)=2f(2-x)-x2+8x-8,
得f(2-x)=2f(x)-(2-x)2+8(2-x)-8,
即2f(x)-f(2-x)=x2+4x-4,∴f(x)=x2,∴f′(x)=2x,∴切线方程为y-1=2(x-1),即2x-y-1=0.A⑩.抓住典型例题,争取融会贯通通过典型例题例题的训练和钻研,总结方法,举一反三,增强自己的解题能力。高考冲刺数学复习策略高考冲刺数学复习策略高考冲刺数学复习策略高考冲刺数学复习策略高考冲刺数学复习策略例.(2010年安徽省理科20题)
证证三、高考数学教学策略研究2、悉心研读数学高考说明
⑩注重对压轴题的研究题:2012年高考数学安徽卷理科第21题:①解题法研究:思路一:利用函数的单调性,结合极限思想,初步确定c的范围。①解题法研究:思路二:利用平均值不等式等号成立的条件,结合极限思想,初步确定c的范围。①解题法研究:思路三:利用方程进行等量变换,减少未知量,确定c的范围。①解题法研究:①解题法研究:思路四:等价转化不等关系为恒成立问题,利用函数知识,确定c的范围。①解题法研究:思路五:利用函数的性质,数形结合,易得c的范围。①解题法研究:【2012高考真题全国卷理22】函数f(x)=x2-2x-3,定义数列{xn}如下:x1=2,xn+1是过两点P(4,5)、Qn(xn,f(xn))的直线PQ与x轴交点的横坐标.(Ⅰ)证明:(Ⅱ)略③相似高考压轴题与统一解法③相似高考压轴题与统一解法③相似高考压轴题与统一解法③相似高考压轴题与统一解法【2007年高考四川卷理科21】已知函数f(x)=x2-4,设曲线y=f(x)在点(xn,f(xn))处的切线与x轴的交点为(xn+1,0)(n∈N
*),其中x1为正实数.(Ⅰ)用xn表示xn+1;(Ⅱ)证明:xn+1≤xn的充要条件是x1≥2③相似高考压轴题与统一解法③相似高考压轴题与统一解法③相似高考压轴题与统一解法③相似高考压轴题与统一解法参考文献《2012年安徽卷(理)压轴题的典型失误与优美解》安徽《中学数学教学》2012年第5期。《立意高妙背景深邃》安徽《中学数学教学》2012年第4期。《2012年高考两道理科压轴题的“源”与“流”》《数学通讯》2012年第9期教师版。③相似高考压轴题与统一解法简要总结大家要研究高考说明,看清某些没有进入高考说明的成分,实在是最为经济的举措,如此就把握了高考的方向目标,明确了目标就可以直奔主题,少走弯路。简要总结
往往一个目标不明确的迅跑者落后与一个目标明确的漫跑者简要总结
数学复习要将其形式化了的知识点,组织成综合化、结构化的过程,与此同时,生成与再生数学观念,形成深度经验,提升数学素质。当同学们的数学素质提升到某种层次,数学高考只是这种素质简单的发挥运用而已,你们在考场上会对数学知识的发挥镇定从容,驾轻就熟。祝各位:
身体健康、
阖家幸福、
万事顺达!
谢谢集合分析与展望:将解不等式知识与集合的表示法、集合的运算综合一起考查,把子集、函数(映射)概念与排列组合知识综合一起考查,是命制集合试题的主要形式。对集合知识的考查重在突出集合语言表述数学问题的工具性。今年对集合知识的考查:延续已往的套路,将集合与解不等式相结合,考查集合与集合的关系,集合的运算,特别是几种语言之间的互化,使用韦恩图(Venn)表达集合的关系及运算的试题也值得关注。试题来源:由课本习题、练习题改编。五、对主干知识点的分析与展望
逻辑分析与展望:逻辑试题多以数学的基本概念为素材,以充要条件的形式考查考生对数学基本知识的记忆与深层次的理解。将充要条件的概念与基本初等函数的性质、不等式的性质、三角函数的基本知识、向量、直线与直线的平行和垂直关系的判定、直线与平面的位置关系等结合命题的相关知识来命题是主要形式。今年的试题逻辑的考查:继续将充要条件的概念与数学的其它知识结合来命题,可能出新的是将充要条件与全称命题、特称命题结合起来考查,这类试题的难度不大。复习时,不必深挖。试题来源:课本上数学的概念形成过程的素材、重要的定理、课本上的练习题、习题、复习题等。五、对主干知识点的分析与展望平面向量分析与展望:向量试题重在考查向量的基本运算(包括坐标运算、模及夹角)、向量运算的几何意义、平面向量的基本定理。今年对向量试题的考查:将向量的运算、向量运算的几何意义结合三角函数、线性规划、函数最值来命制小题,在解析几何、函数、三角函数大题中渗透考查向量的运算及其几何意义。试题来源:课本上的概念形成的素材,练习题、复习题。五、对主干知识点的分析与展望函数与导数分析与展望:函数试题着眼于考查对知识理解的准确性、深刻性,重在考查知识的灵活运用,能较好地体现对数学思想方法、数学思维能力的考查。在小题上,始终围绕着函数的概念(定义域、值域、对应法则)、基本性质(单调性、奇偶性、周期性)、图象(平移变换、对称变换、伸缩变换以及运用函数图像研究函数的性质)、函数与方程(借助零点考查函数图象与方程根的问题)、函数的应用等方面考查,试题通常以二次函数、分段函数、
指数函数、对数函数以及幂函数、三角函数等基本函数的图像与性质为载体来设计;在主观题上,侧重于函数知识的综合运用,将函数的考查与导数、数列、不等式、解析几何等内容相结合:利用函数思想研究数列的性质;借助不等式或导数知识解决函数的单调性和最值问题,同时利用函数的性质解决不等式中的求解与证明问题;利用函数求最值或值域实现求解解析几何中含参数的取值范围问题等。五、对主干知识点的分析与展望函数与导数今年对函数知识的考查:小题的主要形式有以具体函数(二次函数、指数函数、对数函数、分式函数)为载体,考查函数的图象及其变换、函数的性质(常把单调性与函数值的大小比较、解不等式结合)、函数的零点等基本知识;以抽象函数为背景,研究函数的奇偶性、周期性;以导数作为工具,研究复合函数的图象与性质;导数的几何意义与求直线方程、定积分等突出数形结合、函数方程之间的转化。大题的主要以几个基本初等函数复合、迭加配以字母系数来构造函数,利用导数这一工具研究函数的性质,把函数单调性、最值与函数零点、不等式恒成立求参数范围、证明不等式相结合,考查考生综合运用知识,分析、解决问题的能力。函数与导数的实际应用题要重视。试题来源:课本上例题、习题、几个基本初等函数复合、迭加。高中数学竞赛题、自主招生题改编、高等数学初等化。五、对主干知识点的分析与展望三角函数分析与展望:主要考查三角函数的图象与性质(单调性、奇偶性、周期性、对称性)、图象变换(平移与伸缩)、运用三角公式进行化简、求值。今年的三角函数试题:小题主要考查三角函数的图象与性质、图象变换。大题仍有可能以三角形中的三角函数为背景,结合平面向量、正弦、余弦定理,考查三角公式的恒等变形,和运算求解能力;也有可能考查三角函数的图像与性质,结合实际问题考查三角函数的基本公式、图象与性质、正、余弦定理.解三角形的实际应用题要高度关注。试题来源:生活中的素材、课本上的例题、习题。五、对主干知识点的分析与展望数列分析与展望:对数列的考查,重在等差、等比数列的概念、通项公式、求和公式、公式推导过程中所包含的思想和方法(如观察-归纳-猜想、累加、倒序相加、错位相减、裂项相消等)、前n和与第n项之间的关系。数列与函数、不等式结合,主要考查考生综合运用所学知识解决问题的能力、推理论证能力、应用意识。今年数列考题:数列小题主要考查等差、等比数列的通项公式、求和公式及其性质等,从函数的角度来理解数列、将数列与框图结合均值得关注;大题仍然会以将递推关系转化为等差、等比数列求通项、求和,再结合函数、不等式、数学归纳法、解析几何等来命题,通过运用函数与方程、归纳与猜想、等价转化、分类讨论等各种数学思想方法,突出考查考生的思维能力(推理论证能力),考查考生灵活运用数学知识分析问题和解决问题的能力。数列与社会经济、生活的热点结合,是数列应用题的题源,是新课标教材特别重视的,再命一道象07年那样的数列应用题,也是有可能的,应受到重视。试题来源:课本上的例题、习题改编、重组;历届高考试题、竞赛题、自主招生题的改编、重组、演化;高等数学初等化;社会生活热点背景等。五、对主干知识点的分析与展望不等式分析与展望:不等式的内容重点考查的是解不等式(结合集合的表示、集合的交集、并集、补集运算、函数定义域等)、不等式的应用(结合均值不等式、线性规划及其应用题)、不等式的证明.
对不等式的考查有进一步增强的趋势。今年对不等式的考查:突出工具性。小题主要考查不等式性质、解法(可能涉及分段函数)及均值不等式,线性规划。大题一般都是在与其它知识的交汇中考查含参量不等式的解法或与数列、函数、导数综合的不等式证明。不等式与函数、不等式与导数、不等式与方程、不等式与数列的综合性问题仍是解答题的热点题型,承担考查考生的推理论证能力的任务。4-5不等式选讲作为考试内容,可能出小题。五、对主干知识点的分析与展望解析几何分析与展望:对解析几何的考查,小题主要在直线与圆、椭圆、双曲线与抛物线的方程,圆锥曲线的定义的应用,圆锥曲线的几何量计算(离心率、双曲线的渐近线等),直线与直线的位置关系等;大题注重与平面向量、函数、二次方程、不等式、数列等融合与渗透。探求曲线的轨迹方程问题、最值问题、定值问题与参数的取值范围问题依然是考查热点。今年解析几何小题,主要考查直线、圆、圆锥曲线的基本知识(直线与圆位置关系,椭圆、双曲线、抛物线的基本量关系、定义、几何性质),大题则以圆与椭圆、椭圆与抛物线的组合为载体,涉及三个二次的关系,不等式、参数范围、定值问题、与圆锥曲线有关的轨迹问题等,侧重用“几何问题代数化”思想方法去解题,重在考察综合运用所学知识,分析问题,解决问题的能力,运算求解能力、推理论证能力。计算量会有所控制,难度会有所降低.解析几何试题文理差异明显。试题来源:课本上的例题、习题的重组、改编;历届高考试题的演化、重组、改编、拓展;初等数学研究成果改编。五、对主干知识点的分析与展望立体几何分析与展望:立体几何考试的重点是空间直线与直线、直线与平面、平面与平面的平行与垂直的性质与判定、理科还包括线线角、线面角、二面角的计算。考查空间想象能力、推理论证能力是立体几何试题的主要任务。小题考查概念辨析、位置关系探究、三视图与几何体的表面积、体积的简单计算,考查画图、识图、用图的能力;大题是先证后求,一题两法考查空间想象能力,运算求解能力、推理论证能力。今年的立体几何考题:对立体几何内容的考查相对稳定。重在考查空间想象能力、三视图的识图能力、推理论证能力。小题以三视图考查多面体、旋转体的表面积、体积计算和空间位置关系的想象的可能性最大;文科大题可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国人民大学《信息管理专业研究方法论与创新教育》2023-2024学年第一学期期末试卷
- 郑州软件职业技术学院《体育产品概论》2023-2024学年第一学期期末试卷
- 小学2024年体育自评结果
- 浙江电力职业技术学院《生产运作实验》2023-2024学年第一学期期末试卷
- 长安大学兴华学院《瑜伽基础》2023-2024学年第一学期期末试卷
- 餐饮文化与创新模板
- 双十一医保新品发布
- 专业基础-房地产经纪人《专业基础》模拟试卷5
- 三年级学习导向模板
- 气候变迁与寒露模板
- 绿色制造与可持续发展技术
- 污水处理厂单位、分部、分项工程划分
- 春节值班安全教育培训
- 舌咽神经痛演示课件
- 子宫内膜癌业务查房课件
- 社会学概论课件
- 华为经营管理-华为的研发管理(6版)
- C及C++程序设计课件
- 公路路基路面现场测试随机选点记录
- 国家自然科学基金(NSFC)申请书样本
- 湖南省省级温室气体排放清单土地利用变化和林业部分
评论
0/150
提交评论