![人教版八年级数学上册03 教学课件-等边三角形(第1课时)_第1页](http://file4.renrendoc.com/view/66ce0adfde255ed8bcc249f011fc372b/66ce0adfde255ed8bcc249f011fc372b1.gif)
![人教版八年级数学上册03 教学课件-等边三角形(第1课时)_第2页](http://file4.renrendoc.com/view/66ce0adfde255ed8bcc249f011fc372b/66ce0adfde255ed8bcc249f011fc372b2.gif)
![人教版八年级数学上册03 教学课件-等边三角形(第1课时)_第3页](http://file4.renrendoc.com/view/66ce0adfde255ed8bcc249f011fc372b/66ce0adfde255ed8bcc249f011fc372b3.gif)
![人教版八年级数学上册03 教学课件-等边三角形(第1课时)_第4页](http://file4.renrendoc.com/view/66ce0adfde255ed8bcc249f011fc372b/66ce0adfde255ed8bcc249f011fc372b4.gif)
![人教版八年级数学上册03 教学课件-等边三角形(第1课时)_第5页](http://file4.renrendoc.com/view/66ce0adfde255ed8bcc249f011fc372b/66ce0adfde255ed8bcc249f011fc372b5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版七年级数学上册13.3.2等边三角形(第2课时)
下列图片中有你熟悉的数学图形吗?你能说出此图形的名称吗?
导入新知1.掌握等边三角形的定义,等边三角形与等腰三角形的关系.2.探索等边三角形的性质和判定.3.能运用等边三角形的性质和判定进行计算和证明.素养目标小明想制作一个三角形的相框,他有四根木条,长度分别为10cm,10cm,10cm,6cm,你能帮他设计出几种形状的三角形?等边三角形的性质知识点110cm6cm10cm10cm10cm10cm探索新知等腰三角形等边三角形一般三角形在等腰三角形中,有一种特殊的情况,就是底与腰相等,即三角形的三边相等,我们把三条边都相等的三角形叫做等边三角形.探索新知名称图形定义性质
判定等腰三角形等边对等角三线合一等角对等边两边相等两腰相等轴对称图形ABC有两条边相等的三角形叫做等腰三角形探索新知ABCABC等边三角形的三个内角之间有什么关系?等腰三角形AB=AC∠B=∠C等边三角形AB=AC=BCAB=AC∠B=∠CAC=BC∠A=∠B∠A=∠B=∠C内角和为180°=60°问题1:探索新知结论:等边三角形的三个内角都相等,并且每一个角都等于60°.已知:AB=AC=BC,
求证:∠A=∠B=∠C=60°.
证明:
∵AB=AC,∴∠B=∠C.(等边对等角)
同理
∠A=∠C.∴∠A=∠B=∠C.
∵∠A+∠B+∠C=180°,∴∠A=∠B=∠C=60°.探索新知ABCABC等边三角形有“三线合一”的性质吗?等边三角形有几条对称轴?结论:等边三角形每条边上的中线、高和所对角的平分线都“三线合一”.顶角的平分线、底边的高底边的中线三线合一一条对称轴三条对称轴问题2:探索新知图形等腰三角形
性质
每条边上的中线、高和这条边所对的角的平分线互相重合三个角都相等,对称轴(3条)等边三角形对称轴(1条)两个底角相等底边上的中线、高和顶角的平分线互相重合且都是60º两条边相等三条边都相等归纳总结探索新知例1如图,△ABC是等边三角形,E是AC上一点,D是BC延长线上一点,连接BE,DE,若∠ABE=40°,BE=DE,求∠CED的度数.解:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°.∵∠ABE=40°,∴∠EBC=∠ABC–∠ABE=60°–40°=20°.∵BE=DE,∴∠D=∠EBC=20°,∴∠CED=∠ACB–∠D=40°.等边三角形的性质应用素养考点探索新知解决与等边三角形有关的计算问题,关键是注意“每个内角都是60°”这一隐含条件,一般需结合“等边对等角”、三角形的内角和与外角的性质解答.探索新知如图,△ABC是等边三角形,BD平分∠ABC,延长BC到E,使得CE=CD.求证:BD=DE.证明:∵△ABC是等边三角形,BD是角平分线,∴∠ABC=∠ACB=60°,∠DBC=30°.又∵CE=CD,∴∠CDE=∠CED.又∵∠BCD=∠CDE+∠CED,∴∠CDE=∠CED=30°.∴∠DBC=∠DEC.∴DB=DE(等角对等边).探索新知例2△ABC为等边三角形,点M是BC边上任意一点,点N是CA边上任意一点,且BM=CN,BN与AM相交于Q点,∠BQM等于多少度?解:∵△ABC为等边三角形,∴∠ABC=∠C=∠BAC=60°,AB=BC.又∵BM=CN,∴△AMB≌△BNC(SAS),∴∠BAM=∠CBN,∴∠BQM=∠ABQ+∠BAM=∠ABQ+∠CBN=∠ABC=60°.探索新知
此题属于等边三角形与全等三角形的综合运用,一般先利用等边三角形的性质判定三角形全等,而后利用全等及等边三角形的性质,求角度或证明边相等.探索新知如图,已知△ABC为等边三角形,点D,E分别在BC,AC边上,且AE=CD,AD与BE相交于点F.(1)求证:△ABE≌△CAD;(2)求∠BFD的度数.(1)证明:∵△ABC为等边三角形,∴∠BAC=∠C=60°,AB=CA,即∠BAE=∠C=60°,在△ABE和△CAD中,∴△ABE≌△CAD(SAS).(2)解:∵∠BFD=∠ABE+∠BAD,又∵△ABE≌△CAD,∴∠ABE=∠CAD.∴∠BFD=∠CAD+∠BAD=∠BAC=60°.探索新知图形等腰三角形判定
三个角都相等的三角形是等边三角形等边三角形从角看:两个角相等的三角形是等腰三角形从边看:两条边相等的三角形是等腰三角形三条边都相等的三角形是等边三角形小明认为还有第三种方法“两条边相等且有一个角是60°的三角形也是等边三角形”,你同意吗?等边三角形的判定方法:
有一个角是60°的等腰三角形是等边三角形.等边三角形的判定知识点2探索新知根据条件判断下列三角形是否为等边三角形.(1)(2)(6)(5)不是是是是是(4)(3)不一定是探索新知例1
如图,在等边三角形ABC中,DE∥BC,求证:△ADE是等边三角形.ACBDE证明:∵△ABC是等边三角形,∴∠A=∠B=∠C.∵DE//BC,∴∠ADE=∠B,∠AED=∠C.∴∠A=∠ADE=∠AED.∴△ADE是等边三角形.等边三角形的判定的应用素养考点本题还有其他证法吗?探索新知证明:∵
△ABC是等边三角形,
∴
∠A=∠ABC=∠ACB=60°.
∵
DE∥BC,
∴
∠ABC=∠ADE,
∠ACB=∠AED.∴
∠A=∠ADE=∠AED.∴
△ADE是等边三角形.
若点D,E在边AB,AC的延长线上,且DE∥BC,结论还成立吗?ADEBC变式训练探索新知若点D,E在边AB,AC的反向延长线上,且DE∥BC,结论依然成立吗?证明:∵△ABC是等边三角形,∴∠BAC=∠B=∠C=60°.∵DE∥BC,∴∠B=∠D,∠C=∠E.∴∠EAD=∠D=∠E.∴△ADE是等边三角形.ADEBC变式训练探索新知上题中,若将条件DE∥BC改为AD=AE,△ADE还是等边三角形吗?试说明理由.ACBDE证明:∵△ABC是等边三角形,∴∠A=∠B=∠C.∵AD=AE,∴∠ADE=∠B,∠AED=∠C.∴∠A=∠ADE=∠AED.∴△ADE是等边三角形.变式训练探索新知例2等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ,问△APQ是什么形状的三角形?试证明你的结论.解:△APQ为等边三角形.证明如下:∵△ABC为等边三角形,∴AB=AC.∵BP=CQ,∠ABP=∠ACQ,∴△ABP≌△ACQ(SAS),∴AP=AQ,∠BAP=∠CAQ.∵∠BAC=∠BAP+∠PAC=60°,∴∠PAQ=∠CAQ+∠PAC=60°,∴△APQ是等边三角形.探索新知
判定一个三角形是等边三角形有以下方法:一是证明三角形三条边相等;二是证明三角形三个内角相等;三是先证明三角形是等腰三角形,再证明有一个内角等于60°.探索新知证明:∵△ABC为等边三角形,且AD=BE=CF∴AF=BD=CE,∠A=∠B=∠C=60°,∴△ADF≌△BED≌△CFE(SAS),∴DF=ED=EF,∴△DEF是等边三角形.如图,等边△ABC中,D,E,F分别是各边上的一点,且AD=BE=CF.求证:△DEF是等边三角形.探索新知
如图,在等边三角形ABC中,点D是边BC的中点,则∠BAD=______.30°ACBD探索新知2.如图,等边三角形ABC的三条角平分线交于点O,DE∥BC,则这个图形中的等腰三角形共有()A.4个
B.5个C.6个
D.7个DACBDEO1.等边三角形的两条高线相交成钝角的度数是()A.105°B.120°C.135°D.150°B课堂检测3.在等边△ABC中,BD平分∠ABC,BD=BF,则∠CDF的度数是()A.10°
B.15°C.20°
D.25°4.如图,△ABC和△ADE都是等边三角形,已知△ABC的周长为18cm,EC=2cm,则△ADE的周长是
cm.ACBDE12B课堂检测5.如图,在△ABC中,∠ACB=90°,∠CAB=30°,以AB为边在△ABC外作等边△ABD,E是AB的中点,连接CE并延长交AD于F.求证:△AEF≌△BEC.证明:∵△ABD是等边三角形,∴∠DAB=60°,∵∠CAB=30°,∠ACB=90°,∴∠EBC=180°–90°–30°=60°,∴∠FAE=∠EBC.∵E为AB的中点,∴AE=BE.又∵∠AEF=∠BEC,∴△AEF≌△BEC(ASA).课堂检测如图,A,O,D三点共线,△OAB和△OCD是两个全等的等边三角形,求∠AEB的大小.解:∵△OAB和△OCD是两个全等的等边三角形.∴AO=BO,CO=DO,∠AOB=∠COD=60°.∵A,O,D三点共线,∴∠DOB=∠COA=120°.∴△COA≌△DOB(SAS).∴∠DBO=∠CAO.设OB与EA相交于点F,∵∠EFB=∠AFO,∴∠AEB=∠AOB=60°.CBODAEF课堂检测图①、图②中,点C为线段AB上一点,△ACM与△CBN都是等边三角形.(1)如图①,线段AN与线段
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 金融服务居间合同委托书
- 物业服务外包合同
- 锅炉购销合同书
- 车辆租赁保险服务合同
- 语言编程及算法操作手册
- 水产养殖与渔业技术作业指导书
- 软件外包业软件开发与项目管理流程优化研究
- 绿色农业生产技术方案
- 保姆雇佣劳动合同书
- 新夫妻离婚协议书参考样板
- (正式版)HGT 6313-2024 化工园区智慧化评价导则
- 每个孩子都能像花儿一样开放
- 单店爆破促销活动模式精编文档
- YS/T 34.1-2011高纯砷化学分析方法电感耦合等离子体质谱法(ICP-MS)测定高纯砷中杂质含量
- LY/T 2016-2012陆生野生动物廊道设计技术规程
- 松下panasonic-视觉说明书pv200培训
- 单县烟草专卖局QC课题多维度降低行政处罚文书出错率
- 毫针刺法(全)教学课件
- 金风科技-风电产业集团-供应商现场作业基础安全考试附答案
- 人工智能机器人科学小报手抄报简报
- 三年级下册美术课件-第1课 灯彩辉映|浙美版 (共19张PPT)
评论
0/150
提交评论