版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省曲靖市重点初中2023-2024学年高二数学第一学期期末质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直线l1:mx-2y+1=0,l2:x-(m-1)y-1=0,则“m=2”是“l1平行于l2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.如图,是水平放置的的直观图,其中,,分别与轴,轴平行,则()A.2 B.C.4 D.3.已知直线与直线垂直,则()A. B.C. D.4.设等比数列的前项和为,且,则()A. B.C. D.5.在中国古代,人们用圭表测量日影长度来确定节气,一年之中日影最长一天被定为冬至.从冬至算起,依次有冬至、小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气,其日影长依次成等差数列,若冬至、立春、春分日影长之和为31.5尺,小寒、雨水,清明日影长之和为28.5尺,则大寒、惊蛰、谷雨日影长之和为()A.25.5尺 B.34.5尺C.37.5尺 D.96尺6.中国大运河项目成功人选世界文化遗产名录,成为中国第46个世界遗产项目,随着对大运河的保护与开发,大运河已成为北京城市副中心的一张亮丽的名片,也成为众多旅游者的游览目的地.今有一旅游团乘游船从奥体公园码头出发顺流而下至漕运码头,又立即逆水返回奥体公园码头,已知游船在顺水中的速度为,在逆水中的速度为,则游船此次行程的平均速度V与的大小关系是()A. B.C. D.7.复数的共轭复数是A. B.C. D.8.在正三棱锥S-ABC中,AB=4,D、E分别是SA、AB中点,且DE⊥CD,则三棱锥S-ABC外接球的体积为()A.π B.πC.π D.π9.已知,,则下列结论一定成立的是()A. B.C. D.10.在正方体中,AC与BD的交点为M.设则下列向量与相等的向量是()A. B.C. D.11.过双曲线右焦点F作双曲线一条渐近线的垂线,垂足为A,与另一条渐近线交于点B,若,则双曲线C的离心率为()A.或 B.2或C.或 D.2或12.我国古代数学著作《算法统宗》中有这样一段记载:“一百八十九里关,初行健步不为难,次日脚痛减一半,六朝才得到其关.”其大意为:“有一个人共行走了189里的路程,第一天健步行走,从第二天起,因脚痛每天走的路程为前一天的一半,走了6天才到达目的地.”则该人第一天行走的路程为()A.108里 B.96里C.64里 D.48里二、填空题:本题共4小题,每小题5分,共20分。13.已知是椭圆的两个焦点,点M在C上,则的最大值为_______14.若函数在[1,3]单调递增,则a的取值范围___15.圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为________16.已知椭圆方程为,左、右焦点分别为、,P为椭圆上的动点,若的最大值为,则椭圆的离心率为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设{an}是公比为正数的等比数列a1=2,a3=a2+4(Ⅰ)求{an}的通项公式;(Ⅱ)设{bn}是首项为1,公差为2的等差数列,求数列{an+bn}的前n项和Sn18.(12分)设二次函数.(1)若是函数的两个零点,且最小值为.①求证:;②当且仅当a在什么范围内时,函数在区间上存在最小值?(2)若任意实数t,在闭区间上总存在两实数m,n,使得成立,求实数a的取值范围.19.(12分)已知数列满足,,.(1)证明:数列是等比数列,并求其通项公式;(2)若,求数列的前项和.20.(12分)如图,在四棱锥中,底面为直角梯形,,,平面底面,为的中点,是棱上的点,,,.(1)求证:平面平面;(2)若,求异面直线与所成角余弦值;(3)在线段上是否存在一点,使二面角大小为?若存在,请指出点的位置,若不存在,请说明理由.21.(12分)已知圆的方程为:.(1)求的值,使圆的周长最小;(2)过作直线,使与满足(1)中条件的圆相切,求的方程,并求切线段的长.22.(10分)已知圆,点(1)若点在圆外部,求实数的取值范围;(2)当时,过点的直线交圆于,两点,求面积的最大值及此时直线l的斜率
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】利用两直线平行的等价条件求得m,再结合充分必要条件进行判断即可.【详解】由直线l1平行于l2得-m(m-1)=1×(-2),得m=2或m=-1,经验证,当m=-1时,直线l1与l2重合,舍去,所以“m=2”是“l1平行于l2”的充要条件,故选C.【点睛】本题考查两直线平行的条件,准确计算是关键,注意充分必要条件的判断是基础题2、D【解析】先确定是等腰直角三角形,求出,再确定原图的形状,进而求出.【详解】由题意可知是等腰直角三角形,,其原图形是,,,,则,故选:D.3、C【解析】根据两直线垂直可直接构造方程求得结果.【详解】由两直线垂直得:,解得:.故选:C.4、C【解析】根据给定条件求出等比数列公比q的关系,再利用前n项和公式计算得解.【详解】设等比数列的的公比为q,由得:,解得,所以.故选:C5、A【解析】由题意可知,十二个节气其日影长依次成等差数列,设冬至日的日影长为尺,公差为尺,利用等差数列的通项公式,求出,即可求出,从而得到答案【详解】设从冬至日起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列{},如冬至日的日影长为尺,设公差为尺.由题可知,所以,,,,故选:A6、A【解析】求出平均速度V,进而结合基本不等式求得答案.【详解】易知,设奥运公园码头到漕运码头之间的距离为1,则游船顺流而下的时间为,逆流而上的时间为,则平均速度,由基本不等式可得,而,当且仅当时,两个不等式都取得“=”,而根据题意,于是.故选:A.7、B【解析】因,故其共轭复数.应选B.考点:复数的概念及运算.8、C【解析】取中点,连接,证明平面,得证,然后证明平面,得两两垂直,以为棱把三棱锥补成一个正方体,正方体的对角线是其外接球的直径,而正方体的外接球也是正三棱锥的外接球,由此计算可得【详解】取中点,连接,则,,,平面,所以平面,又平面,所以,D、E分别是SA、AB的中点,则,又,所以,,平面,所以平面,而平面,所以,,是正三棱锥,因此,因此可以为棱把三棱锥补成一个正方体,正方体的对角线是其外接球的直径,而正方体的外接球也是正三棱锥的外接球,由,得,所以所求外接球直径为,半径为,球体积为故选:C9、B【解析】根据不等式的同向可加性求解即可.【详解】因为,所以,又,所以.故选:B.10、C【解析】根据空间向量的运算法则,推出的向量表示,可得答案.【详解】,故选:C.11、D【解析】求得点A,B的坐标,利用转化为坐标比求解.【详解】不妨设直线,由题意得,解得,即;由得,即,因为,所以,所以当时,,;当时,,则,故选:D12、B【解析】根据题意,记该人每天走的路程里数为,分析可得每天走的路程里数构成以的为公比的等比数列,由求得首项即可【详解】解:根据题意,记该人每天走的路程里数为,则数列是以的为公比的等比数列,又由这个人走了6天后到达目的地,即,则有,解可得:,故选:B.【点睛】本题考查数列的应用,涉及等比数列的通项公式以及前项和公式的运用,注意等比数列的性质的合理运用.二、填空题:本题共4小题,每小题5分,共20分。13、16【解析】根据椭圆定义可得:,再用基本不等式求解.【详解】由椭圆的定义可得:,由基本不等式得:,当且仅当时,等号成立,故的最大值为16故答案为:1614、【解析】由在区间上恒成立来求得的取值范围.【详解】依题意在区间上恒成立,在上恒成立,所以.故答案为:15、相交【解析】由题意知,两圆的圆心分别为(-2,0),(2,1),故两圆的圆心距离为,两圆的半径之差为1,半径之和为5,而1<<5,所以两圆的位置关系为相交16、【解析】利用椭圆的定义结合余弦定理可求得,再利用公式可求得该椭圆的离心率的值.【详解】由椭圆的定义可得,由余弦定理可得,因为的最大值为,则,可得,因此,该椭圆的离心率为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)an=2×2n﹣1=2n(Ⅱ)2n﹣12n+1﹣2+n2=2n+1+n2﹣2【解析】(Ⅰ)由{an}是公比为正数的等比数列,设其公比,然后利用a1=2,a3=a2+4可求得q,即可求得{an}的通项公式(Ⅱ)由{bn}是首项为1,公差为2的等差数列可求得bn=1+(n﹣1)×2=2n﹣1,然后利用等比数列与等差数列的前n项和公式即可求得数列{an+bn}的前n项和Sn解:(Ⅰ)∵设{an}是公比为正数的等比数列∴设其公比为q,q>0∵a3=a2+4,a1=2∴2×q2="2×q+4"解得q=2或q=﹣1∵q>0∴q="2"∴{an}的通项公式为an=2×2n﹣1=2n(Ⅱ)∵{bn}是首项为1,公差为2的等差数列∴bn=1+(n﹣1)×2=2n﹣1∴数列{an+bn}的前n项和Sn=+=2n+1﹣2+n2=2n+1+n2﹣2点评:本题考查了等比数列的通项公式及数列的求和,注意题目条件的应用.在用等比数列的前n项和公式时注意辨析q是否为1,只要简单数字运算时不出错,问题可解,是个基础题18、(1)①证明见解析;②(2)【解析】(1)①根据二次函数的性质和一元二次方程的求根公式,求得,即可证得;②由①知,区间,根据二次函数的性质,即可求解.(2)存在两实数,使得成立,转化为在区间上,有成立,设﹐结合二次函数的图象与性质,分类讨论,即可求解.【小问1详解】解:①由题意,函数二次函数,因为最小值为,可得,即,因为,所以根据求根公式得,所以.②由①知,区间因为,对称轴,且函数在区间上存在最小值,所以,因为,所以解得,所以,即a的取值范围为.【小问2详解】解:存在两实数,使得成立,则在区间上,有成立,设﹐函数对称轴为①当即时,在上单调减,,此时;②当即时,,此时③当即时,,此时;④当即时,,此时;综合①②③④得,且最小值为,因为对任意实数t,都有,所以只需,即,所以实数a的取值范围.19、(1)证明见解析,;(2).【解析】(1)由已知条件,可得为常数,从而得证数列是等比数列,进而可得数列的通项公式;(2)由(1)可得,又,所以,所以,利用错位相减法即可求解数列的前项和.【小问1详解】证明:由题意,因为,,,所以,,所以数列是以2为首项,3为公比的等比数列,所以;【小问2详解】解:由(1)可得,又,所以,所以,所以,所以,,所以,所以.20、(1)证明见解析;(2);(3)存在,点在线段上位于靠近点的四等分点处.【解析】(1)证明平面,利用面面垂直的判定定理可证得结论成立;(2)以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,利用空间向量法可求得异面直线与所成角的余弦值;(3)假设存在点,设,其中,利用空间向量法可得出关于的方程,结合的取值范围可求得的值,即可得出结论.【小问1详解】证明:,,为的中点,则且,四边形为平行四边形,.,即,,又平面平面,平面平面,平面,平面平面,平面平面.【小问2详解】解:,为的中点,.平面平面,且平面平面,平面,平面.如图,以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,则、、、、,,,则,,异面直线与所成角的余弦值为.【小问3详解】解:假设存在点,设,其中,所以,,且,设平面法向量为,所以,令,可得,由(2)知平面的一个法向量为,二面角为,则,整理可得,因,解得.故存在点,且点在线段上位于靠近点的四等分点处.21、(1)(2)直线方程为或,切线段长度为4【解析】(1)先求圆的标准方程,由半径最小则周长最小;(2)由,则圆的方程为:,直线和圆相切则圆心到直线的距离等于半径,分直线与轴垂直和直线与轴不垂直两种情况进行讨论即可得解.进一步,利用圆的几何性质可求解切线的长度.【小问1详解】,配方得:,当时,圆的半径有最小值2,此时圆的周长最小.【小问2详解】由(1)得,,圆的方程为:.当直线与轴垂直时,,此时直线与圆相切,符合条件;当直线与轴不垂直时,设为,由直线与圆相切得:,解得,所以切线方程为,即.综上,直线方程为或.圆心与点的距离,则切线长度为.22、(1);(2)最大值为2,【解析】(1)根据题意,将圆的方程变形为标准方程,由点与圆的位置关系可得,求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 色素课程设计思路图解
- 客服话术课程设计
- 侧向测井课程设计报告
- 斑马餐饮运营课程设计
- 煤气管理系统课程设计
- 画室消课活动课程设计
- 融合课程设计数学
- 湖南研学旅行课程设计
- 批判性课程设计
- 菱形垫片落料模课程设计
- 《人工智能基础》课件-AI的前世今生:她从哪里来
- 3.2 代数式的值(第1课时)(课件)-2024-2025学年七年级数学上册(人教版2024)
- 血液透析高钾血症的护理查房
- ISO28000:2022供应链安全管理体系
- 新北师大单元分析二上第六单元《测量》单元教材解读
- 2023陕西中考英语试卷分析
- 2022-2023学年湖南省长沙市雅礼教育集团八年级(上)期中数学试卷(含解析)
- 城乡规划基本术语标准 - 中国城市规划行业信息网
- 实验一蒸馏工业乙醇
- 4×35000kva新型节能环保型高碳铬铁合金矿热炉综合利用项目环境影响评价报告书
- 初中英语语法课件[共240页]
评论
0/150
提交评论