偏微分方程数值解复习题_第1页
偏微分方程数值解复习题_第2页
偏微分方程数值解复习题_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

偏微分方程数值解期末复习(2011硕士)考题类型本次试卷共六道题目,题型及其所占比例分别为:填空题20%;计算题80%二、按章节复习内容第一章知识点:Euler法、向前差商、向后差商、中心差商、局部截断误差、整体截断误差、相容性、收敛性、阶、稳定性、显格式、隐格式、线性多步法、第一特征多项式、第二特征多项式、稳定多项式、绝对稳定等;要求:会辨认差分格式,判断线性多步法的误差和阶;第二章知识点:矩形网格、(正则,非正则)内点、边界点、偏向前(向后,中心)差商、五点差分格式、增设虚点法、积分插值法、线性椭圆型差分格式、极值原理、比较定理、五点差分格式的相容收敛和、稳定性等;要求:建立椭圆型方程边值问题的差分格式,极值原理;第四章知识点:最简显格式、最简隐格式、CN格式、双层加权格式、Richardson格式、网格比、传播因子法(分离变量法)、传播因子、传播矩阵、谱半径、vonNeumann条件、跳点格式、ADI格式、线性椭圆型差分格式、极值原理、比较定理、五点差分格式的相容收敛和稳定性等;要求:建立抛物型方程边值问题的差分格式,计算局部截断误差;第五章知识点:左偏心格式、右偏心格式、中心格式、LF格式、LW格式、Wendroff格式、跳蛙格式、特征线、CFL条件等;要求:建立双曲型方程边值问题的差分格式,计算局部截断误差;第七章要求:会用线性元(线性基)建立常微分方程边值问题的有限元格式三练习题1、已知显格式,试证明格式是相容的,并求它的阶。P39+P412、用Taylor展开原理构造一元函数一阶导数和二阶导数的数值微分公式。提示:向前、向后和中心差商与一阶导数间关系,二阶中心差商与二阶导数之间的关系课件3、用数值微分方法或数值积分方法建立椭圆型方程内点差分格式。P75+课件4、构造椭圆型方程边值问题的差分格式.P101(4)题5、构建一维热传导方程的数值差分格式(显隐格式等)。参考P132-135相关知识点6、设有逼近热传导方程的带权双层格式其中,试求其截断误差。并证明当时,截断误差的阶最高阶为。P135+P165+课件7、传播因子法证明抛物型方程的最简显隐和六点CN格式稳定性。P156+课件8、对一阶常系数双曲型方程的初边值问题试建立左右偏心差分格式。P185+课件9、设有逼近双曲型方程的双层加权格式,试求其截断误差,并说明当时截断误差为最高阶.P19410、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论