下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
合比性质和等比性质田伟德教学目的:1、掌握合比和等比性质,并会用它们进行简单的比例变形;2、会将合比与等比性质用于比例线段;3、提高学生类比联想推广命题的能力。教学重点、难点:熟练并灵活运用合比、等比性质概念:【合比定理】在一个比例里,第一个比的前后项的和与它后项的比,等于第二个比的前后项的和与它的后项的比,这叫做比例中的合比定理。即:如果,那么【分比定理】在一个比例里,第一个比的前后项的差与它的后项的比,等于第二个比的前后项的差与它们的后项的比,这叫做比例中的分比定理。即:如果,那么【合分比定理】一个比例里,第一个前后项之和与它们的差的比,等于第二个比的前后项的和与它们的差的比。这叫做比例中的合分比定理。即:如果,那么【更比定理】一个比的前项与另一个比的后项互调后,所得结果仍是比例.即:如果,那么推论:如果那么教学过程:一、用特殊化的方法探索合比性质1、复习平行线等分线段定理。如图(1),已知一组平行线在直线l上截得AB=BC=CD=DE=EF,则由平行线等分线段定理可以得到,在l/截得的各对应线段也相等,即A/B/=B/C/=C/D/=D/E/=E/F/。(a)图(1)(b)2、将上述结论改写成比例形式,可以猜想结论:从图(1a)中分解出图(1b),由一组平行线可得出。观察与的关系?并对一般情况做出猜想:若有,则有==。猜想:如果,那么。3、证明猜想,得出合比性质。(1)启发学生观察已知与未知的关系,寻找证明思路。证法一(设比法)设,则∵∴证法二(利用等式的性质)∵,∴即(2)类比联想,得到分比性质:如果,那么。让学生用以上两种证法中的一种证明。得合比性质:如果,那么。(3)理解合比性质的内容,会用语言叙述。4、类比联想,将合比性质进行推广。合比性质的表达式中:(1)比例式的第二、四比例项保持不变;(2)比的前、后项对应求和或差(作为新比
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- YC/T 617-2024卷烟质量市场反馈信息分析与处理规范
- 2025版借款垫资风险控制合作协议范本3篇
- 2025年度智能电网项目可研咨询服务协议正范文本3篇
- 学校化粪池维修工程协议
- 2025版文化旅游项目建议书编制及运营管理合同3篇
- 徒步班组施工合同
- 保险服务标准化管理办法
- 通信设备招投标法规解析
- 电子产品采购招投标改进策略
- 商业广场施工合作协议
- 猪场配怀工作安排方案设计
- GB/T 2-2016紧固件外螺纹零件末端
- GB/T 12467.5-2009金属材料熔焊质量要求第5部分:满足质量要求应依据的标准文件
- GB 17740-1999地震震级的规定
- 安全生产事故举报奖励制度
- 冠心病健康教育完整版课件
- 永久避难硐室安装施工组织措施
- 元旦节前安全教育培训-教学课件
- 国家开放大学《理工英语1》单元自测8试题答案
- 芯片工艺流程课件1
- 人教版八年级下册生物期末测试卷带答案
评论
0/150
提交评论