




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省济宁市微山县第二中学2023年高二上数学期末质量跟踪监视模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.等比数列中,,,则()A. B.C. D.2.椭圆的长轴长是()A.3 B.6C.9 D.43.已知向量,则()A.5 B.6C.7 D.84.在等差数列中,已知,则()A.4 B.8C.3 D.65.已知圆的圆心到直线的距离为,则圆与圆的位置关系是()A.相交 B.内切C.外切 D.外离6.设函数在上可导,则等于()A. B.C. D.以上都不对7.如图,平面四边形中,,,,为等边三角形,现将沿翻折,使点移动至点,且,则三棱锥的外接球的表面积为()A. B.C. D.8.已知“”的必要不充分条件是“或”,则实数的最小值为()A. B.C. D.9.某救援队有5名队员,其中有1名队长,1名副队长,在一次救援中需随机分成两个行动小组,其中一组2名队员,另一组3名队员,则正、副队长不在同一组的概率为()A. B.C. D.10.若曲线f(x)=x2的一条切线l与直线平行,则l的方程为()A.4x-y-4=0 B.x+4y-5=0C.x-4y+3=0 D.4x+y+4=011.若,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件12.已知公差为的等差数列满足,则()A B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.根据如下样本数据34567402.5-0.50.5-2得到的回归方程为若,则的值为___________.14.点P(8,1)平分椭圆x2+4y2=4的一条弦,则这条弦所在直线的方程是_______.15.曲线在处的切线方程为______16.已知数列满足0,,则数列的通项公式为____,则数列的前项和______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线的准线方程是.(Ⅰ)求抛物线的方程;(Ⅱ)设直线与抛物线相交于,两点,为坐标原点,证明:.18.(12分)已知直线经过点且斜率为(1)求直线的一般式方程(2)求与直线平行,且过点的直线的一般式方程(3)求与直线垂直,且过点的直线的一般式方程19.(12分)从①;②;③这三个条件中任选一个,补充在下面问题中,并作答设等差数列的前n项和为,,______;设数列的前n项和为,(1)求数列和的通项公式;(2)求数列的前项和注:作答前请先指明所选条件,如果选择多个条件分别解答,按第一个解答计分20.(12分)已知:,椭圆,双曲线.(1)若的离心率为,求的离心率;(2)当时,过点的直线与的另一个交点为,与的另一个交点为,若恰好是的中点,求直线的方程.21.(12分)在空间直角坐标系Oxyz中,O为原点,已知点,,,设向量,.(1)求与夹角的余弦值;(2)若与互相垂直,求实数k的值.22.(10分)已知椭圆的左、右焦点分别是,点P是椭圆C上任一点,若面积的最大值为,且离心率(1)求C的方程;(2)A,B为C的左、右顶点,若过点且斜率不为0的直线交C于M,N两点,证明:直线与的交点在一条定直线上
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】设公比为,依题意得到方程,即可求出,再根据等比数列通项公式计算可得;【详解】解:设公比为,因为,,所以,即,解得,所以;故选:D2、B【解析】根据椭圆方程有,即可确定长轴长.【详解】由椭圆方程知:,故长轴长为6.故选:B3、A【解析】利用空间向量的模公式求解.【详解】因向量,所以,故选:A4、B【解析】根据等差数列的性质计算出正确答案.【详解】由等差数列的性质可知,得.故选:B5、B【解析】求出两圆的圆心与半径,根据两圆的位置关系的判定即可求解.【详解】已知圆的圆心到直线的距离,即,解得或,因为,所以,圆的圆心的坐标为,半径,将圆化为标准方程为,其圆心的坐标为,半径,圆心距,两圆内切,故选:B6、C【解析】根据目标式,结合导数的定义即可得结果.【详解】.故选:C7、A【解析】将三棱锥补形为如图所示的三棱柱,则它们的外接球相同,由此易知外接球球心应在棱柱上下底面三角形的外心连线上,在中,计算半径即可.【详解】由,,可知平面将三棱锥补形为如图所示的三棱柱,则它们的外接球相同,由此易知外接球球心应在棱柱上下底面三角形的外心连线上,记的外心为,由为等边三角形,可得又,故在中,此即为外接球半径,从而外接球表面积为故选:A【点睛】本题考查了三棱锥外接球的表面积,考查了学生空间想象,逻辑推理,综合分析,数学运算的能力,属中档题.8、A【解析】首先解不等式得到或,根据题意得到,再解不等式组即可.【详解】,解得或,因为“”的必要不充分条件是“或”,所以.实数的最小值为.故选:A9、C【解析】求出基本事件总数与正、副队长不在同一组的基本事件个数,即可求出答案.【详解】基本事件总数为正、副队长不在同一组的基本事件个数为故正、副队长不在同一组的概率为.故选:C.10、D【解析】设切点为,则切线的斜率为,然后根据条件可得的值,然后可得答案.【详解】设切点为,因为,所以切线的斜率为因为曲线f(x)=x2的一条切线l与直线平行,所以,即所以l的方程为,即故选:D11、C【解析】利用函数在上单调递减即可求解.【详解】解:因为函数在上单调递减,所以若,,则;反之若,,则.所以若,则“”是“”的充要条件,故选:C.12、C【解析】根据等差数列前n项和,即可得到答案.【详解】∵数列是公差为的等差数列,∴,∴.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、-1.4##【解析】分别求出的值,即得到样本中心点,根据样本中心点一定在回归直线上,可求得答案.【详解】,则得到样本中心点为,因为样本中心点一定在回归直线上,故,解得,故答案为:14、【解析】结合点差法求得正确答案.【详解】椭圆方程可化为,设是椭圆上的点,是弦的中点,则,两式相减并化简得,即,所以弦所在直线方程为,即.故答案为:15、【解析】求得的导数,可得切线的斜率和切点,由斜截式方程可得切线方程【详解】解:的导数为,可得曲线在处的切线斜率为,切点为,即有切线方程为故答案为【点睛】本题考查导数的运用:求切线方程,考查导数的几何意义,直线方程的运用,考查方程思想,属于基础题16、①.②.【解析】第一空:先构造等比数列求出,即可求出的通项公式;第二空:先求出,令,通过错位相减求出的前项和为,再结合等差数列的求和公式及分组求和即可求解.【详解】第一空:由可得,又,则是以1为首项,2为公比的等比数列,则,则;第二空:,设,前项和为,则,,两式相减得,则,又,则.故答案为:;.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)详见解析【解析】(Ⅰ)利用排趋性的准线方程求出p,即可求解抛物线的方程;(Ⅱ)直线y=k(x-2)(k≠0)与抛物线联立,通过韦达定理求解直线的斜率关系即可证明OM⊥ON试题解析:(Ⅰ)解:因为抛物线的准线方程为,所以,解得,所以抛物线的方程为.(Ⅱ)证明:设,.将代入,消去整理得.所以.由,,两式相乘,得,注意到,异号,所以.所以直线与直线的斜率之积为,即.考点:直线与抛物线的位置关系;抛物线的标准方程18、(1)(2)(3)【解析】(1)先写点斜式方程,再化一般式,(2)根据平行设一般式,再代点坐标得结果,(3)根据垂直设一般式,再代点坐标得结果.【详解】(1)(2)设所求方程为因为过点,所以(3)设所求方程为因为过点,所以【点睛】本题考查直线方程,考查基本分析求解能力,属基础题.19、(1)条件选择见解析,,(2)【解析】(1)设数列的首项为,公差为d,选①由求解;选②由求解;选③由求解;则,由,利用数列通项与前n项和公式求解;(2)易知,再利用错位相减法求解.【小问1详解】解:设数列的首项为,公差为d,选①得,则,选②得,则,选③得,则,所以数列的通项公式为因为,所以当时,,则当时,,则,所以是以首项为2,公比为2的等比数列,所以【小问2详解】因为,所以数列的前n项和①②①-②得∴,则20、(1)(2)或【解析】(1)有椭圆的离心率可以得到,的关系,在双曲线中方程是非标准的方程,注意套公式时容易出错.(2)联立方程分别解得P,Q两点的横坐标,利用中点坐标公式即可解得斜率值.【小问1详解】椭圆的离心率为,,在双曲线中因为,.【小问2详解】当时,椭圆,双曲线.当过点的直线斜率不存在时,点P,Q恰好重合,坐标为,所以不符合条件;当斜率存在时,设直线方程为,,联立方程得,利用韦达定理,所以;同理联立方程,韦达定理得,所以由于是的中点,所以,所以,即,化简得,所以直线方程为或.21、(1)(2)【解析】(1)由向量的坐标先求出,,,由向量的夹角公式可得答案.(2)由题意可得,从而求出参数的值【小问1详解】由题,,,故,,,所以故与夹角余弦值为.【小问2详解】由与的互相垂直知,,,即22、(1);(2)证明见解析.【解析】(1)用待定系数法求出椭圆的方程;(2)设直线MN的方程为x=my+1,设,用“设而不求法”表示出.由直线AM的方程为,直线BN的方程为,联立,解得:,即可证明直线AM与BN的交点在直线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人教版数学六年级下册总复习综合练习(数与代数)1-7
- 广东省揭阳市华侨高级中学2025届高三冲刺高考最后1卷物理试题含解析
- 昆明卫生职业学院《交通运输商务管理》2023-2024学年第二学期期末试卷
- 贵州城市职业学院《汽车保险与理赔》2023-2024学年第二学期期末试卷
- 应收账款流程管理图解
- 上海建桥学院《声乐》2023-2024学年第一学期期末试卷
- 西安科技大学《兽医微生物学》2023-2024学年第二学期期末试卷
- 海南比勒费尔德应用科学大学《西方文艺美学专题》2023-2024学年第二学期期末试卷
- 湖北省荆门市京山市2025年数学五年级第二学期期末复习检测模拟试题含答案
- 股骨干骨折中医护理查房
- 原始点医学(201904第15版)
- 网络安全应急处置工作预案
- 军事理论课件教学
- 《电网生产技改大修项目全过程管理典型案例》笔记
- 七年级下册数学课件:平行线中的拐点问题
- 氧气吸入操作评分标准(中心供氧)
- 入股到别人私人名下协议书
- UG NX12.0基础与应用教程 课件全套 单元1-8 UG NX 12.0 软件的基础知识 - 工程图操作基础
- 2023版29490-2023企业知识产权合规管理体系管理手册
- 2023-2024学年广东省广州市天河区八年级(下)期中数学试卷(含解析)
- 2024年宁波职业技术学院单招职业适应性测试题库及答案解析
评论
0/150
提交评论