江西省宜春市丰城市丰城九中2024届高二上数学期末考试模拟试题含解析_第1页
江西省宜春市丰城市丰城九中2024届高二上数学期末考试模拟试题含解析_第2页
江西省宜春市丰城市丰城九中2024届高二上数学期末考试模拟试题含解析_第3页
江西省宜春市丰城市丰城九中2024届高二上数学期末考试模拟试题含解析_第4页
江西省宜春市丰城市丰城九中2024届高二上数学期末考试模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省宜春市丰城市丰城九中2024届高二上数学期末考试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知是虚数单位,若复数满足,则()A. B.2C. D.42.在空间直角坐标系中,已知点,,则线段的中点坐标与向量的模长分别是()A.;5 B.;C.; D.;3.已知直线方程为,则其倾斜角为()A.30° B.60°C.120° D.150°4.已知,,,执行如图所示的程序框图,输出值为()A. B.C. D.5.已知双曲线的左焦点为F,O为坐标原点,M,N两点分别在C的左、右两支上,若四边形OFMN为菱形,则C的离心率为()A. B.C. D.6.已知,,若,则xy的最小值是()A. B.C. D.7.已知呈线性相关的变量x与y的部分数据如表所示:若其回归直线方程是,则()x24568y34.5m7.59A.6.5 B.6C.6.1 D.78.已知直线与直线,若,则()A.6 B.C.2 D.9.已知,且直线始终平分圆的周长,则的最小值是()A.2 B.C.6 D.1610.几何学史上有一个著名的米勒问题:“设点、是锐角的一边上的两点,试在边上找一点,使得最大的.”如图,其结论是:点为过、两点且和射线相切的圆的切点.根据以上结论解决一下问题:在平面直角坐标系中,给定两点,,点在轴上移动,当取最大值时,点的横坐标是()A.B.C.或D.或11.在长方体中,,,则异面直线与所成角的正弦值是()A. B.C. D.12.在等比数列中,,,则等于()A. B.5C. D.9二、填空题:本题共4小题,每小题5分,共20分。13.已知球的半径为4,圆与圆为该球的两个小圆,为圆与圆的公共弦,,若,则两圆圆心的距离___________14.已知双曲线C:的一个焦点坐标为,则其渐近线方程为__________15.四棱锥A-BCDE中,底面BCDE为矩形,侧面ABC⊥底面BCDE,侧面ABE⊥底面BCDE,BC=2,CD=4(I)证明:AB⊥面BCDE;(II)若AD=2,求二面角C-AD-E的正弦值16.已知过椭圆上的动点作圆(为圆心):的两条切线,切点分别为,若的最小值为,则椭圆的离心率为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)用长度为80米的护栏围出一个一面靠墙的矩形运动场地,如图所示,运动场地的一条边记为(单位:米),面积记为(单位:平方米)(1)求关于的函数关系;(2)求的最大值18.(12分)在直角坐标系中,曲线C的参数方程为,(为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.(1)写出曲线C的极坐标方程;(2)已知直线与曲线C相交于A,B两点,求.19.(12分)已知椭圆的右焦点为,且经过点.(1)求椭圆的标准方程;(2)设椭圆的左顶点为,过点的直线(与轴不重合)交椭圆于两点,直线交直线于点,若直线上存在另一点,使.求证:三点共线.20.(12分)如图,在四棱锥中,四边形为平行四边形,且,,三角形为等腰直角三角形,且,.(1)若点为棱的中点,证明:平面平面;(2)若平面平面,点为棱的中点,求直线与平面所成角的正弦值.21.(12分)已知椭圆的左、右焦点分别为,,且椭圆过点,离心率,为坐标原点,过且不平行于坐标轴的动直线与有两个交点,,线段的中点为.(1)求的标准方程;(2)记直线斜率为,直线的斜率为,证明:为定值;(3)轴上是否存在点,使得为等边三角形?若存在,求出点的坐标;若不存在,请说明理由.22.(10分)已知椭圆的离心率是,且过点.(1)求椭圆的标准方程;(2)若直线与椭圆交于A、B两点,线段的中点为,为坐标原点,且,求面积的最大值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】先求出,然后根据复数的模求解即可【详解】,,则,故选:C2、B【解析】根据给定条件利用中点坐标公式及空间向量模长的坐标表示计算作答.【详解】因点,,所以线段的中点坐标为,.故选:B3、D【解析】由直线方程可得斜率,根据斜率与倾斜角的关系即可求倾斜角大小.【详解】由题设,直线斜率,若直线的倾斜角为,则,∵,∴.故选:D4、A【解析】模拟程序运行可得程序框图的功能是计算并输出三个数中的最小数,计算三个数判断作答.【详解】模拟程序运行可得程序框图的功能是计算并输出三个数中的最小数,因,,,则,不成立,则,不成立,则,所以应输出的x值为.故选:A5、C【解析】由题意可得且,从而求出点的坐标,将其代入双曲线方程中,即可得出离心率.【详解】由题意,四边形为菱形,如图,则且,分别为的左,右支上的点,设点在第二象限,在第一象限.由双曲线的对称性,可得,过点作轴交轴于点,则,所以,则,所以,所以,则,即,解得,或,由双曲线的离心率,所以取,则故选:C6、C【解析】对使用基本不等式,这样得到关于的不等式,解出xy的最小值【详解】因为,,由基本不等式得:,所以,解得:,当且仅当,即,时,等号成立故选:C7、A【解析】根据回归直线过样本点的中心进行求解即可.【详解】由题意可得,,则,解得故选:A.8、A【解析】根据两直线垂直的充要条件得到方程,解得即可;【详解】解:因为直线与直线,且,所以,解得;故选:A9、B【解析】由已知直线过圆心得,再用均值不等式即可.【详解】由已知直线过圆心得:,,当且仅当时取等.故选:B.10、A【解析】根据米勒问题的结论,点应该为过点、的圆与轴的切点,设圆心的坐标为,写出圆的方程,并将点、的坐标代入可求出点的横坐标.【详解】解:设圆心的坐标为,则圆的方程为,将点、的坐标代入圆的方程得,解得或(舍去),因此,点的横坐标为,故选:A.11、C【解析】连接,可得,得到异面直线与所成角即为直线与所成角,设,设,求得的值,在中,利用余弦定理,即可求解.【详解】如图所示,连接,在正方体中,可得,所以异面直线与所成角即为直线与所成角,设,由在长方体中,,,设,可得,在直角中,可得,在中,可得,所以,因为,所以.故选:C.12、D【解析】由等比数列的项求公比,进而求即可.【详解】由题设,,∴故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】欲求两圆圆心的距离,将它放在与球心组成的三角形中,只要求出球心角即可,通过球的性质构成的直角三角形即可解得【详解】∵,球半径为4,∴小圆的半径为,∵小圆中弦长,作垂直于,∴,同理可得,在直角三角形中,∵,,∴,∴,∴故答案为:.14、【解析】根据双曲线的定义由焦点坐标求出,即可得到双曲线方程,从而得到其渐近线方程;【详解】解:因为双曲线C:的一个焦点坐标为,即,,又,所以,所以双曲线方程为,所以双曲线的渐近线为;故答案为:15、(Ⅰ)详见解析;(Ⅱ).【解析】(Ⅰ)推导出BE⊥BC,从而BE⊥平面ABC,进而BE⊥AB,由面ABE⊥面BCDE,得AB⊥BC,由此能证明AB⊥面BCDE(Ⅱ)以B为原点,所在直线分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出二面角C﹣AD﹣E的正弦值【详解】由侧面底面,且交线为,底面为矩形所以平面,又平面,所以由面面,同理可证,又面在底面中,,由面,故,以为原点,所在直线分别为轴建立空间直角坐标系,则,设平面的法向量,则,取所以平面的法向量,同理可求得平面的法向量.设二面角的平面角为,则故所求二面角的正弦值为.【点睛】本题考查线面垂直的证明,考查二面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题16、【解析】由椭圆方程和圆的方程可确定椭圆焦点、圆心和半径;当最小时,可知,此时;根据椭圆性质知,解方程可求得,进而得到离心率.【详解】由椭圆方程知其右焦点为;由圆的方程知:圆心为,半径为;当最小时,则最小,即,此时最小;此时,;为椭圆右顶点时,,解得:,椭圆的离心率.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)平方米【解析】(1)由题意得矩形场地的另一边长为80-2x米,通过矩形面积得出关于的函数表达式;(2)利用二次函数的性质求出的最大值即可【小问1详解】解:由题意得矩形场地的另一边长为80-2x米,又,得,所以【小问2详解】解:由(1)得,当且仅当时,函数取得最大值平方米18、(1);(2).【解析】(1)首先将圆的参数方程华为普通方程,再转化为极坐标方程即可.(2)首先联立得到,再求的长度即可.【详解】(1)将曲线C的参数方程,(为参数)化为普通方程,得,极坐标方程为.(2)联立方程组,消去得,设点A,B对应的极径分别为,,则,,所以.19、(1);(2)证明见解析.【解析】(1)根据给定条件利用椭圆的定义求出轴长即可计算作答.(2)根据给定条件设出的方程,与椭圆C的方程联立,求出直线PA的方程并求出点M的坐标,求出点N的坐标,再利用斜率推理作答.【小问1详解】依题意,椭圆的左焦点,由椭圆定义得:即,则,所以椭圆的标准方程为.【小问2详解】由(1)知,,直线不垂直y轴,设直线方程为,,由消去x得:,则,,直线的斜率,直线的方程:,而直线,即,直线的斜率,而,即,直线的斜率,直线的方程:,则点,直线的斜率,直线的斜率,,而,即,所以三点共线.【点睛】思路点睛:解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x(或y)建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系20、(1)证明见解析(2)【解析】(1)先证明,,进而证明平面,即可证明平面,从而证明平面平面.(2)以点为坐标原点,分别以,,所在直线为轴,轴,轴,建立如图所示的空间直角坐标系,用向量法求解即可【小问1详解】因为为等腰直角三角形,点为棱的中点,所以,又因为,,所以,又因为在中,,,所以,所以,所以,又因为,所以平面,又因为为平行四边形,所以,所以平面,又因为平面,所以平面平面.【小问2详解】因为平面平面,平面平面,,所以平面,又因为,以点为坐标原点,分别以,,所在直线为轴,轴,轴,建立如图所示的空间直角坐标系.则,,,,所以,,,,设平面的一个法向量为,则由,,可得令,得,设直线与平面所成角为,,所以直线与平面所成角的正弦值为.21、(1);(2)证明见解析;(3)不存在,理由见解析.【解析】(1)由椭圆所过点及离心率,列方程组,再求解即得;(2)设出点A,B坐标并列出它们满足的关系,利用点差法即可作答;(3)设直线的方程,联立直线与椭圆的方程,借助韦达定理求得,,再结合为等边三角形的条件即可作答.【详解】(1)显然,半焦距c有,即,则,所以椭圆的标准方程为;(2)设,,,,由(1)知,,两式相减得,即,而弦的中点,则有,所以;(3)假定存在符合要求的点P,由(1)知,设直线的方程为,由得:,则,,于是得,从而得点,,因为等边三角形,即有,,因此,,,从而得,整理得,无解,所以在y轴上不存在点,使得为等边三角形.22、(1);(2)2.【解析】(1)根据已知条件列出关于a、b、c的方程组即可求得椭圆标准方程;(2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论