版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省盐城市东台市2024届数学高二上期末监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设双曲线:的左,右焦点分别为,,过的直线与双曲线的右支交于A,B两点,若,则双曲线的离心率为()A.4 B.2C. D.2.已知,,,则下列判断正确的是()A. B.C. D.3.已知公比不为1的等比数列,其前n项和为,,则()A.2 B.4C.5 D.254.把点随机投入长为,宽为的矩形内,则点与矩形四边的距离均不小于的概率为()A. B.C. D.5.将的展开式按x的降幂排列,第二项不大于第三项,若,且,则实数x的取值范围是()A. B.C. D.6.已知抛物线上一点到焦点的距离为3,准线为l,若l与双曲线的两条渐近线所围成的三角形面积为,则双曲线C的离心率为()A.3 B.C. D.7.如图所示几何体的正视图和侧视图都正确的是()A. B.C. D.8.若,则下列不等式①;②;③;④中,正确的不等式有()A.0个 B.1个C.2个 D.3个9.已知为偶函数,且,则___________.10.在中,已知点在线段上,点是的中点,,,,则的最小值为()A. B.4C. D.11.已知是双曲线的左焦点,为右顶点,是双曲线上的点,轴,若,则双曲线的离心率为()A. B.C. D.12.某校高二年级统计了参加课外兴趣小组的学生人数,每人只参加一类,数据如下表:学科类别文学新闻经济政治人数400300100200若从参加课外兴趣小组的学生中采用分层抽样的方法抽取50名参加学习需求的问卷调查,则从文学、新闻、经济、政治四类兴趣小组中抽取的学生人数分别为()A.15,20,10,5 B.15,20,5,10C.20,15,10,5 D.20,15,5,10二、填空题:本题共4小题,每小题5分,共20分。13.曲线在点处的切线方程为_________14.已知点P为椭圆上的任意一点,点,分别为该椭圆的左、右焦点,则的最大值为______________.15.已知圆的方程为,点是直线上的一个动点,过点作圆的两条切线为切点,则四边形面积的最小值为__________;直线__________过定点.16.有一道楼梯共10阶,小王同学要登上这道楼梯,登楼梯时每步随机选择一步一阶或一步两阶,小王同学7步登完楼梯的概率为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知双曲线的左焦点为,到的一条渐近线的距离为1.直线与交于不同的两点,,当直线经过的右焦点且垂直于轴时,.(1)求的方程;(2)是否存在轴上的定点,使得直线过点时,恒有?若存在,求出点的坐标;若不存在,请说明理由.18.(12分)命题p:直线l:与圆C:有公共点,命题q:双曲线的离心率(1)若p,q均为真命题,求实数m的取值范围;(2)若为真,为假,求实数m的取值范围19.(12分)若分别是椭圆的左、右焦点,是该椭圆上的一个动点,且(1)求椭圆的方程(2)是否存在过定点的直线与椭圆交于不同的两点,使(其中为坐标原点)?若存在,求出直线的斜率;若不存在,说明理由20.(12分)人类社会正进入数字时代,网络成为了必不可少的工具,智能手机也给我们的生活带来了许多方便.但是这些方便、时尚的手机,却也让你的眼睛离健康越来越远.为了了解手机对视力的影响程度,某研究小组在经常使用手机的中学生中进行了随机调查,并对结果进行了换算,统计了中学生一个月中平均每天使用手机的时间x(小时)和视力损伤指数的数据如下表:平均每天使用手机的时间x(小时)1234567视力损伤指数y25812151923(1)根据表中数据,求y关于x的线性回归方程.(2)该小组研究得知:视力的下降值t与视力损伤指数y满足函数关系式,如果小明在一个月中平均每天使用9个小时手机,根据(1)中所建立的回归方程估计小明视力的下降值(结果保留一位小数).参考公式及数据:,..21.(12分)在平面直角坐标系中,为坐标原点,曲线上点都在轴及其右侧,且曲线上的任一点到轴的距离比它到圆的圆心的距离小1(1)求曲线的方程;(2)已知过点的直线交曲线于点,若,求面积22.(10分)阿基米德(公元前年—公元前年)不仅是著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴与短半轴的乘积.已知平面直角坐标系中,椭圆:的面积为,两焦点与短轴的一个顶点构成等边三角形.(1)求椭圆的标准方程;(2)过点的直线与交于不同的两点,求面积的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据双曲线的定义及,求出,,,,再利用余弦定理计算可得;【详解】解:依题意可知、,又且,所以,,,,则,且,即,即,所以离心率.故选:B2、A【解析】根据对数函数的单调性,以及根式的运算,确定的大小关系,则问题得解.【详解】因为,即;又,故.故选:A.3、B【解析】设等比数列的公比为,根据求得,从而可得出答案.【详解】解:设等比数列的公比为,则,所以,则.故选:B.4、A【解析】确定矩形四边的距离均不小于的点构成的区域,由几何概型面积型的公式计算可得结果.【详解】若点与矩形四边的距离均不小于,则其落在如图所示的阴影区域内,所求概率.故选:A.5、A【解析】按照二项展开式展开表示出第二项第三项,解不等式即可.【详解】由二项展开式,第二项为:,第三项为:,依题意,两边约去得到,即,由知,则,同时约去得到.故选:A.6、C【解析】先由已知结合抛物线的定义求出,从而可得抛物线的准线方程,则可求出准线l与两条渐近线的交点分别为,然后由题意可得,进而可求出双曲线的离心率详解】依题意,抛物线准线,由抛物线定义知,解得,则准线,双曲线C的两条渐近线为,于是得准线l与两条渐近线的交点分别为,原点为O,则面积,双曲线C的半焦距为c,离心率为e,则有,解得故选:C7、B【解析】根据侧视图,没有实对角线,正视图实对角线的方向,排除错误选项,得到答案.【详解】侧视时,看到一个矩形且不能有实对角线,故A,D排除而正视时,有半个平面是没有的,所以应该有一条实对角线,且其对角线位置应从左上角画到右下角,故C排除.故选:B.8、C【解析】由条件,可得,利用不等式的性质和基本不等式可判断①、②、③、④中不等式的正误,得出答案.【详解】因为,所以.因此,且,且②、③不正确.所以,所以①正确,由得、均为正数,所以,(由条件,所以等号不成立),所以④正确.故选:C.9、8【解析】由已知条件中的偶函数即可计算出结果,【详解】为偶函数,且,.故答案为:810、C【解析】利用三点共线可得,由,利用基本不等式即可求解.【详解】由点是的中点,则,又因为点在线段上,则,所以,当且仅当,时取等号,故选:C【点睛】本题考查了基本不等式求最值、平面向量共线的推论,考查了基本运算求解能力,属于基础题.11、C【解析】根据条件可得与,进而可得,,的关系,可得解.【详解】由已知得,设点,由轴,则,代入双曲线方程可得,即,又,所以,即,整理可得,故,解得或(舍),故选:C.12、D【解析】利用分层抽样的等比例性质求抽取的样本中所含各小组的人数.【详解】根据分层抽样的等比例性质知:文学小组抽取人数为人;新闻小组抽取人数为人;经济小组抽取人数为人;政治小组抽取人数为人;故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】求导,求出切线斜率,用点斜式写出直线方程,化简即可.【详解】,曲线在点处的切线方程为,即故答案为:14、【解析】利用正弦定理表示出,再求t,再利用求的最大值即可.【详解】在中,由正弦定理得,所以,,即求的最大值,也就是求t的最小值,而,即最大时,由椭圆的性质知当P为椭圆上顶点时最大,此时,,所以,所以的最大值是1,,所以,故答案为:.【点睛】本题考查椭圆焦点三角形的问题,考查正弦定理的应用.15、①.②.【解析】根据切线的相关性质将四边形面积化为,即求出最小值即可,即圆心到直线的距离;又可得四点在以为直径的圆上,且是两圆的公共弦,设出点坐标,求出圆的方程可得直线方程,即可得出定点.详解】由圆得圆心,半径,由题意可得,在中,,,可知当垂直直线时,,所以四边形的面积的最小值为,可得四点在以为直径的圆上,且是两圆的公共弦,设,则圆心为,半径为,则该圆方程为,整理可得,联立两圆可得直线AB的方程为,即可得当时,,故直线过定点.故答案为:;.16、【解析】由题意可分为步、步、步、步、步、步共6种情况,分别求出每种的基本事件数,再利用古典概型的概率公式计算可得;【详解】解:由题意可分为步、步、步、步、步、步共6种情况,①步:即步两阶,有种;②步:即步两阶与步一阶,有种;③步:即步两阶与步一阶,有种;④步:即步两阶与步一阶,有种;⑤步:即步两阶与步一阶,有种;⑥步:即步一阶,有种;综上可得一共有种情况,满足7步登完楼梯的有种;故7步登完楼梯的概率为故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)存在,理由见解析.【解析】(1)根据题意,列出的方程组,解得,则椭圆方程得解;(2)假设存在点满足题意,设出直线的方程,联立双曲线方程,利用韦达定理以及,即可求解.【小问1详解】双曲线的左焦点,其中一条渐近线,则;对双曲线,令,解得,则,解得,故双曲线方程为:.小问2详解】根据(1)中所求可知,假设存在轴上的点满足题意,若直线的斜率不为零,则设其方程为,联立双曲线方程,可得,则,即,此时直线与双曲线交于两点,则,则,即,即,则,此时满足题意;若直线的斜率为零,且过点,此时,满足题意.综上所述,存在轴上的一点满足.【点睛】本题考察双曲线方程的求解,以及双曲线中存在某点满足条件的问题;解决问题的关键是合理转化,利用韦达定理进行求解,属综合中档题.18、(1),;(2).【解析】(1)求出,成立的等价条件,即可求实数的取值范围;(2)若“”为假命题,“”为真命题,则、一真一假,当真假时,求出的取值范围,当假真时,求出的取值范围,然后取并集即可得答案【小问1详解】若命题为真命题,则,解得:,若命题为真命题,则且,,解得,∴,均为真命题,实数的取值范围是,;【小问2详解】若为真,为假,则、一真一假;①当真假时,即“”且“或”,则此时的取值范围是;当假真时,即“或”且“”,则此时的取值范围是;综上,的取值范围是19、(1);(2)存在;【解析】(1)根据已知条件求得,由此求得椭圆的方程.(2)设出直线的方程并与椭圆方程联立,化简写出根与系数关系,利用列方程,化简求得直线的斜率.【小问1详解】依题意,得椭圆的方程为【小问2详解】存在.理由如下:显然当直线的斜率不存在,即时,不满足条件故由题意可设的方程为.由是直线与椭圆的两个不同的交点,设,由消去y,并整理,得,则,解得,由根与系数的关系得,,即存在斜率的直线与椭圆交于不同的两点,使20、(1)(2)0.3【解析】(1)由表格数据及参考公式即可求解;(2)由(1)中线性回归方程计算小明的视力损伤指数,再将代入视力的下降值t与视力损伤指数y满足的函数关系式即可求解.【小问1详解】解:由表格数据得:,,,,所以线性回归方程为;【小问2详解】解:小明的视力损伤指数,所以,估计小明视力的下降值为0.3.21、(1)(2)【解析】(1)由题意直接列或根据抛物线的定义求轨迹方程(2)待定系数法设直线方程,联立直线与抛物线方程,根据抛物线的定义,利用韦达定理解出直线方程,再求面积【小问1详解】解法1:配方法可得圆的方程为,即圆的圆心为,设的坐标为,由已知可得,化简得,曲线的方程为解法2:配方可得圆的方程为,即圆的圆心为,由题意可得上任意一点到直线的距离等于该点到圆心的距离,由抛物线的定义可得知,点的轨迹为以点为焦点的抛物线,所以曲线的方程为【小问2详解】抛物线的焦点为,准线方程为,由,可得的斜率存在,设为,,过的直线的方程为,与抛物线的方程联立,可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年违约借款合同违约责任追究办法3篇
- 2025年度个人房屋买卖价格调整及支付合同4篇
- 2025年度企业应收账款债权转让与风险控制协议书3篇
- 2025年度房地产样板间设计与施工合同范本4篇
- 2025年度电子商务个人劳务派遣合作协议书4篇
- 工厂租地合同(2篇)
- 二零二五年度民政局离婚协议书模板法律咨询附加服务合同4篇
- 2025年度销售顾问市场调研聘用合同2篇
- 2024西部县域经济百强研究
- STEM教育实践讲解模板
- 2025年山东浪潮集团限公司招聘25人高频重点提升(共500题)附带答案详解
- 2024年财政部会计法律法规答题活动题目及答案一
- 2025年江西省港口集团招聘笔试参考题库含答案解析
- (2024年)中国传统文化介绍课件
- 液化气安全检查及整改方案
- 《冠心病》课件(完整版)
- 2024年云网安全应知应会考试题库
- 公园保洁服务投标方案
- 光伏电站项目合作开发合同协议书三方版
- 高中物理答题卡模板
- 芳香植物与芳香疗法讲解课件
评论
0/150
提交评论