百师联盟山东卷2023-2024学年高二上数学期末学业水平测试试题含解析_第1页
百师联盟山东卷2023-2024学年高二上数学期末学业水平测试试题含解析_第2页
百师联盟山东卷2023-2024学年高二上数学期末学业水平测试试题含解析_第3页
百师联盟山东卷2023-2024学年高二上数学期末学业水平测试试题含解析_第4页
百师联盟山东卷2023-2024学年高二上数学期末学业水平测试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

百师联盟山东卷2023-2024学年高二上数学期末学业水平测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.过抛物线的焦点引斜率为1的直线,交抛物线于,两点,则()A.4 B.6C.8 D.102.过点,的直线的斜率等于1,则m的值为()A.1 B.4C.1或3 D.1或43.甲、乙两名同学同时从教室出发去体育馆打球(路程相等),甲一半时间步行,一半时间跑步;乙一半路程步行,一半路程跑步.如果两人步行速度、跑步速度均相等,则()A.甲先到体育馆 B.乙先到体育馆C.两人同时到体育馆 D.不确定谁先到体育馆4.设为椭圆上一点,,为左、右焦点,且,则()A.为锐角三角形 B.为钝角三角形C.为直角三角形 D.,,三点构不成三角形5.在空间直角坐标系下,点关于轴对称的点的坐标为()A. B.C. D.6.已知抛物线上一点到其焦点的距离为5,双曲线的左顶点为A,若双曲线的一条渐近线与直线AM平行,则实数n的值是()A. B.C. D.7.命题,,则为()A., B.,C., D.,8.若数列{an}满足……,则称数列{an}为“半差递增”数列.已知“半差递增”数列{cn}的前n项和Sn满足,则实数t的取值范围是()A. B.(-∞,1)C. D.(1,+∞)9.执行如图所示的程序框图,若输入的的值为3,则输出的的值为()A.3 B.6C.9 D.1210.如图,用4种不同的颜色对A,B,C,D四个区域涂色,要求相邻的两个区域不能用同一种颜色,则不同的涂色方法有()A.24种 B.48种C.72种 D.96种11.已知是等差数列,,,则公差为()A.6 B.C. D.212.设,分别是双曲线:的左、右焦点,过点作的一条渐近线的垂线,垂足为,,为坐标原点,则双曲线的离心率为()A. B.2C. D.二、填空题:本题共4小题,每小题5分,共20分。13.不等式是的解集为______14.已知等比数列的各项均为实数,其前项和为,若,,则__________.15.过抛物线的焦点的直线交抛物线于点、,且点的横坐标为,过点和抛物线顶点的直线交抛物线的准线于点,则的面积为___________.16.直线恒过定点,则定点坐标为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆O:与圆C:(1)在①,②这两个条件中任选一个,填在下面的横线上,并解答若______,判断这两个圆位置关系;(2)若,求直线被圆C截得的弦长注:若第(1)问选择两个条件分别作答,按第一个作答计分18.(12分)已知数列的前项和是,且,等差数列中,(1)求数列的通项公式;(2)定义:记,求数列的前20项和19.(12分)已知抛物线的准线与轴的交点为.(1)求的方程;(2)若过点的直线与抛物线交于,两点.请判断是否为定值,若是,求出该定值;若不是,请说明理由.20.(12分)如图,在四棱柱中,底面,,,且,(1)求证:平面平面;(2)求二面角所成角的余弦值21.(12分)已知两点(1)求以线段为直径的圆C的方程;(2)在(1)中,求过M点的圆C的切线方程22.(10分)年月日,中国选手杨倩在东京奥运会女子米气步枪决赛由本得冠军,为中国代表团揽入本届奥运会第一枚金牌.受奥运精神的鼓舞,某射击俱乐部组织名射击爱好者进行一系列的测试,并记录他们的射击得分(单位:分),将所得数据整理得到如图所示的频率分布直方图.(1)求频率分布直方图中的值,并估计该名射击爱好者的射击平均得分(求平均值时同一组数据用该组区间的中点值作代表);(2)若采用分层抽样的方法,从得分高于分的射击爱好者中随机抽取人调查射击技能情况,再从这人中随机选取人进行射击训练,求这人中至少有人的分数高于分的概率.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由题意可得,的方程为,设、,联立直线与抛物线方程可求,利用抛物线的定义计算即可求解.【详解】由上可得:焦点,直线的方程为,设,,由,可得,则有,由抛物线的定义可得:,故选:C.2、A【解析】解方程即得解.【详解】由题得.故选:A【点睛】本题主要考查斜率的计算,意在考查学生对该知识的理解掌握水平.3、A【解析】设出总路程与步行速度、跑步速度,表示出两人所花时间后比较不等式大小【详解】设总路程为,步行速度,跑步速度对于甲:,得对于乙:,当且仅当时等号成立,而,故,乙花时间多,甲先到体育馆故选:A4、D【解析】根据椭圆方程求出,然后结合椭圆定义和已知条件求出并求出,进而判断答案.【详解】由题意可知,,由椭圆的定义可知,而,联立方程解得,且,则6+2=8,即不构成三角形.故选:D.5、C【解析】由空间中关于坐标轴对称点坐标的特征可直接得到结果.【详解】关于轴对称的点的坐标不变,坐标变为相反数,关于轴对称的点为.故选:C.6、C【解析】首先根据抛物线焦半径公式得到,从而得到,再根据曲线的一条渐近线与直线AM平行,斜率相等求解即可.【详解】由题知:,解得,抛物线.双曲线的左顶点为,,因为双曲线的一条渐近线与直线平行,所以,解得.故选:C7、B【解析】直接利用特称命题的否定是全称命题写出结果即可.【详解】命题,为特称命题,而特称命题的否定是全称命题,所以命题,,则为:,.故选:B8、A【解析】根据,利用递推公式求得数列的通项公式.再根据新定义的意义,代入解不等式即可求得实数的取值范围.【详解】因为所以当时,两式相减可得,即,所以数列是以公比的等比数列当时,所以,则由“差半递增”数列的定义可知化简可得解不等式可得即实数的取值范围为故选:A.9、A【解析】模拟执行程序框图,根据输入数据,即可求得输出数据.【详解】当时,不满足,故,即输出的的值为.故选:.10、B【解析】按涂色顺序进行分四步,根据分步乘法计数原理可得解.【详解】按涂色顺序进行分四步:涂A部分时,有4种涂法;涂B部分时,有3种涂法;涂C部分时,有2种涂法;涂D部分时,有2种涂法.由分步乘法计数原理,得不同的涂色方法共有种.故选:B.11、C【解析】设的首项为,把已知的两式相减即得解.【详解】解:设的首项为,根据题意得,两式相减得.故选:C12、D【解析】先求过右焦点且与渐近线垂直的直线方程,与渐近线方程联立求点P的坐标,再用两点间的距离公式,结合已知条件,得到关于a,c的关系式.【详解】双曲线的左右焦点分别为、,一条渐近线方程为,过与这条渐近线垂直的直线方程为,由,得到点P的坐标为,又因为,所以,所以,所以.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由可得,结合分式不等式的解法即可求解.【详解】由可得,整理可得:,则,解可得:.所以不等式是的解集为:.故答案为:.14、1【解析】分公比和两种情况讨论,结合,,即可得出答案.【详解】解:设等比数列的公比为,当,由,,不合题意,当,由,得,综上所述.故答案为:1.15、##【解析】不妨设点为第一象限内的点,求出点的坐标,可求得直线、的方程,求出点、的坐标,可求得以及点到直线的距离,利用三角形的面积公式可求得的面积.【详解】不妨设点为第一象限内的点,设点,其中,则,可得,即点,抛物线的焦点为,,所以,直线的方程为,联立,解得或,即点,所以,,直线的方程为,抛物线的准线方程为,联立,可得点,点到直线的距离为,因此,.故答案为:.16、【解析】解方程组可求得定点坐标.【详解】直线方程可化为,由,可得.故直线恒过定点.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)选①:外离;选②:相切;(2)【解析】(1)不论选①还是选②,都要首先算出两圆的圆心距,然后和两圆的半径之和或差进行比较即可;(2)根据点到直线的距离公式,先计算圆心到直线的距离,然后利用圆心距、半径、弦长的一半之间的关系求解.【小问1详解】选①圆O的圆心为,半径为l;圆C圆心为,半径为因为两圆的圆心距为,且两圆的半径之和为,所以两圆外离选②圆O的圆心为,半径为1.圆C的圆心为,半径为2因为两圆的圆心距为.且两圆的半径之和为,所以两圆外切【小问2详解】因为点C到直线的距离,所以直线被圆C截得的弦长为18、(1);(2)【解析】(1)利用求得递推关系得等比数列,从而得通项公式,再由等差数列的基本时法求得通项公式;(2)根据定义求得,然后分组求和法求得和【小问1详解】由题意,当时,两式相减,得,即是首项为3,公比为3的等比数列设数列的公差为,小问2详解】由19、(1)(2)是定值,定值为【解析】(1)由抛物线的准线求标准方程;(2)直线与抛物线相交求定值,解联立方程消未知数,利用韦达定理,求线段长,再求它们的倒数的平方和.【小问1详解】由题意,可得,即,故抛物线的方程为.【小问2详解】为定值,且定值是.下面给出证明.证明:设直线的方程为,,,联立抛物线有,消去得,则,又,.得因此为定值,且定值是.20、(1)证明见解析;(2).【解析】(1)证出,,由线面垂直的判定定理可得平面,再根据面面垂直的判定定理即可证明.(2)分别以,,为,,轴,建立空间直角坐标系,求出平面的一个法向量以及平面的一个法向量,由即可求解.【详解】(1)证明:因为,,所以,,因为,所以,所以,即因为底面,所以底面,所以因为,所以平面,又平面,所以平面平面(2)解:如图,分别以,,为,,轴,建立空间直角坐标系,则,,,,所以,,,设平面的法向量为,则令,得设平面的法向量为,则令,得,所以,由图知二面角为锐角,所以二面角所成角的余弦值为【点睛】思路点睛:解决二面角相关问题通常用向量法,具体步骤为:(1)建坐标系,建立坐标系的原则是尽可能的使得已知点在坐标轴上或在坐标平面内;(2)根据题意写出点的坐标以及向量的坐标,注意坐标不能出错.(3)利用数量积验证垂直或求平面的法向量.(4)利用法向量求距离、线面角或二面角.21、(1);(2).【解析】(1)求出圆心和半径即可得到答案;(2)根据题意先求出切线的斜率,进而通过点斜式求出切线方程.【小问1详解】由题意,圆心,半径,则圆C的方程为:.【小问2详解】由题意,,则切线斜率为-1,所以切线方程为:.22、(1),平均分为;(2).【解析】(1)利用频率直方图中所有矩形面积之和为可求得的值,将每个矩形底边的中点值乘以对应矩形的面积,将所得结果全部相加可得平均成绩;(2)分析可知所抽取的人中,成绩在内的有人,分别记为、、、,成绩在内的有人,分别记为、,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论