版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGE三角函数综合编稿:丁会敏审稿:王静伟【学习目标】1.理解任意角的概念、弧度的意义,能正确地进行弧度与角度的换算.2.掌握任意角的正弦、余弦、正切的定义,掌握同角三角函数的基本关系式,掌握正弦、余弦的诱导公式,理解周期函数与最小正周期的意义.3.能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明.4.会用“五点法”画正弦函数、余弦函数和函数的简图,理解的物理意义.5.掌握正弦函数、余弦函数的周期性、奇偶性、单调性等性质并能灵活应用.6.熟练掌握正弦函数、余弦函数、正切函数、余切函数图象的形状,理解图象平移变换、伸缩变换的意义,并会用这两种变换研究函数图象的变化.【知识网络】【要点梳理】要点一:终边相同的角1.终边相同的角凡是与终边相同的角,都可以表示成的形式.要点诠释:(1)终边相同的前提是:原点,始边均相同;(2)终边相同的角不一定相等,但相等的角终边一定相同;(3)终边相同的角有无数多个,它们相差的整数倍.特例:终边在x轴上的角集合,终边在y轴上的角集合,终边在坐标轴上的角的集合.在已知三角函数值的大小求角的大小时,通常先确定角的终边位置,然后再确定大小.2.弧度和角度的换算(1)角度制与弧度制的互化:弧度,弧度,弧度(2)弧长公式:(是圆心角的弧度数),扇形面积公式:.要点诠释:(1)角有正负零角之分,它的弧度数也应该有正负零之分,如等等,一般地,正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0,角的正负主要由角的旋转方向来决定.(2)角的弧度数的绝对值是:,其中,是圆心角所对的弧长,是半径.要点二:任意角的三角函数的定义、三角函数的符号规律、特殊角的三角函数值、同角三角函数的关系式、诱导公式:1.三角函数定义:角终边上任意一点为,设则:要点诠释:三角函数的值与点在终边上的位置无关,仅与角的大小有关.我们只需计算点到原点的距离,那么,,.2.三角函数符号规律:一全正,二正弦,三正切,四余弦(为正);要点诠释:口诀的含义是在第一象限各三角函数值为正;在第二象限正弦值为正,在第三象限正切值为正,在第四象限余弦值为正.3.特殊角的三角函数值02sin010-10cos10-101tan01不存在0不存在04.同角三角函数的基本关系:解出的范围,所得区间即为减区间;要点诠释:(1)注意复合函数的解题思想;(2)比较三角函数值的大小,往往是利用奇偶性或周期性在转化为属于同一单调区间上的两个同名函数值,再利用单调性比较.3.确定的解析式的步骤①首先确定振幅和周期,从而得到;②确定值时,往往以寻找“五点法”中第一个零点作为突破口,要注意从图象的升降情况找准第一个零点的位置,同时要利用好最值点.要点五:正弦型函数的图象变换方法先平移后伸缩的图象的图象的图象的图象的图象.先伸缩后平移的图象的图象的图象的图象的图象.【典型例题】类型一:三角函数的概念例1.已知角的终边上一点,且,求的值.【思路点拨】【解析】由题设知,,所以,得,从而,解得或.当时,,;当时,,;当时,,.【总结升华】理解正弦函数和余弦函数的定义,三角函数值是比值,是一个实数,这个实数的大小和点在终边上的位置无关.举一反三:【变式1】已知角α的终边过点P(-8m,-6sin30°),且cosα=-,则m的值为()A.- B. C.- D.【答案】B【解析】r=,∴cosα=,∴m>0,∴,∴m=±.∵m>0,∴m=.例2.已知角;(1)在区间内找出所有与角有相同终边的角;(2)集合,,那么两集合的关系是什么?【答案】(1)或(2)【解析】(1)所有与角有相同终边的角可表示为:,则令,得解得,从而或代回或.(2)因为表示的是终边落在四个象限的平分线上的角的集合;而集合表示终边落在坐标轴或四个象限平分线上的角的集合,从而:.【总结升华】(1)从终边相同的角的表示入手分析问题,先表示出所有与角有相同终边的角,然后列出一个关于的不等式,找出相应的整数,代回求出所求解;(2)可对整数的奇、偶数情况展开讨论.举一反三:【变式1】集合,,则()A、B、C、D、【答案】C【解析】(法一)取特殊值-1,-3,-2,-1,0,1,2,3,4(法二)在平面直角坐标系中,数形结合(法三)集合M变形,集合N变形,是的奇数倍,是的整数倍,因此.类型二:扇形的弧长和面积公式例3.已知一半径为r的扇形,它的周长等于所在圆的周长的一半,那么扇形的中心角是多少弧度?合多少度?扇形的面积是多少?【答案】【解析】设扇形的圆心角是,因为扇形的弧长是,所以扇形的周长是依题意,得≈≈【总结升华】弧长和扇形面积的核心公式是圆周长公式和圆面积公式,当用圆心角的弧度数代替时,即得到一般的弧长公式和扇形面积公式:类型三:同角三角函数基本关系式例4.若sinθcosθ=,θ∈(,),求cosθ-sinθ的值.【思路点拨】已知式为sinθ、cosθ的二次式,欲求式为sinθ、cosθ的一次式,为了运用条件,须将cosθ-sinθ进行平方.【解析】(cosθ-sinθ)2=cos2θ+sin2θ-2sinθcosθ=1-=.∵θ∈(,),∴cosθ<sinθ.∴cosθ-sinθ=-.【总结升华】sinθcosθ,cosθ+sinθ,cosθ-sinθ三者关系紧密,由其中之一,可求其余之二.举一反三:【变式1】已知是的一个内角,且,求【思路点拨】根据可得的范围:再结合同角三角函数的关系式求解.【答案】【解析】为钝角,由,平方整理得【变式2】已知cosθ-sinθ=-,求sinθcosθ,sinθ+cosθ的值.【答案】【解析】,,,类型四:三角函数的诱导公式例5.(1)sin585°的值为()A.- B. C.- D.(2)已知sin(2π-α)=,α∈,则等于()A. B.- C.-7 D.7【思路点拨】本题是对诱导公式和特殊三角函数值的考查,熟练掌握诱导公式即可.【答案】(1)A(2)A【解析】(1)sin585°=sin(360°+225°)=sin(180°+45°)=-.(2)sin(2π-α)=-sinα=,∴sinα=-.又α∈,∴cosα=.∴=.【总结升华】诱导公式用角度和弧度制表示都成立,记忆方法可以概括为“奇变偶不变,符号看象限”,“变”与“不变”是相对于对偶关系的函数而言的,sin与cos对偶,“奇”、“偶”是对诱导公式中的整数k来讲的,象限指中,将看作锐角时,所在象限,如将写成,因为3是奇数,则“cos”变为对偶函数符号“sin”,又看作第四象限角,为“+”,所以有.举一反三:【变式1】已知cos,且-π<α<-,则cos等于 ()A. B. C.- D.-【答案】D【解析】cos=cos=sin.又-π<α<-,∴-π<+α<-,∴sin=-,∴cos=-.类型五:三角函数的图象和性质例6.函数y=-xcosx的部分图象是()【思路点拨】结合函数的奇偶性以及函数值的正负,或采用特殊值法.【解析】因为函数y=-xcosx是奇函数,它的图象关于原点对称,所以排除A、C,当x∈(0,)时,y=-xcosx<0.答案为D.【总结升华】本题通过观察四个选项A,C与B,D分别关于y轴和原点对称,从而启示我们从研究函数奇偶性入手考虑进行筛选,然后通过研究其函数值的符号进行确定,充分体现了数形结合的思想在解题中的应用.举一反三:【高清课堂:三角函数的综合395043例1】【变式1】函数在内()A.没有零点B.有且仅有一个零点C.有且仅有两个零点D.有无穷多个零点【答案】B例7.已知函数的最小正周期为,为了得到函数的图象,只要将的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【思路点拨】对于不同三角函数图象之间的平移变换,一定要根据诱导公式将二者之间变换清楚.【答案】A【解析】由题知又,所以所以==显然将的图象向左平移个单位长度便可得到的图象.故选A.举一反三:【变式1】把函数的图象上所有的点向左平行移动个单位长度,再把所得图象上所有点的横坐标缩短到原来的倍(纵坐标不变),得到的图象所表示的函数是()A. B.C. D.解析:,故选C.例8.函数()的最大值为3,其图像相邻两条对称轴之间的距离为.(1)求函数的解析式;(2)设,则,求的值.【思路点拨】由题意知,A=2,,可求出.(2)把代入函数解析式,求出的值.【答案】(1)(2)【解析】(1)∵函数的最大值为3,∴即∵函数图像的相邻两条对称轴之间的距离
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湖北艺术职业学院《模具CAD-CAM》2023-2024学年第一学期期末试卷
- 2025年度食品检测设备销售合同范本
- 2025年技术转让合同技术标的详细描述2篇
- 红河云南红河蒙自经济技术开发区消防救援大队招收专职消防员20人笔试历年参考题库附带答案详解
- 2025年度物联网解决方案行销合同3篇
- 玉溪云南玉溪澄江市教育体育系统招聘2025年毕业生9人(第二次)笔试历年参考题库附带答案详解
- 江苏2025年江苏建筑职业技术学院湖西校区招聘人事代理工作人员26人笔试历年参考题库附带答案详解
- 2025年房产及土地使用权受赠合同3篇
- 合肥2024年安徽合肥庐江县社区工作者招聘56人笔试历年参考题库附带答案详解
- 三明2024年福建三明市第二医院(三明市永安总医院)招聘23人笔试历年参考题库附带答案详解
- 2023年河南省公务员录用考试《行测》真题及答案解析
- 2024年安徽省公务员录用考试《行测》真题及答案解析
- 山西省太原市重点中学2025届物理高一第一学期期末统考试题含解析
- 充电桩项目运营方案
- 2024年农民职业农业素质技能考试题库(附含答案)
- 高考对联题(对联知识、高考真题及答案、对应练习题)
- 新版《铁道概论》考试复习试题库(含答案)
- 【律师承办案件费用清单】(计时收费)模板
- 高中物理竞赛真题分类汇编 4 光学 (学生版+解析版50题)
- Unit1FestivalsandCelebrations词汇清单高中英语人教版
- 2024年上海市中考语文试题卷(含答案)
评论
0/150
提交评论