版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
相似三角形证明及综合题1、如图,在中,,分别以为边向外作和,使.延长交边于点,点在两点之间,连结.(1)求证:.(2)当时,求的度数.(1)证明:在平行四边形ABCD中,AB=DC.又∵DF=DC,∴AB=DF.同理EB=AD.在平行四边形ABCD中,∠ABC=∠ADC.又∵∠EBC=∠CDF,∴∠ABE=∠ADF,∴△ABE≌△FDA.(4分)(2)解:∵△ABE≌△FDA,∴∠AEB=∠DAF.∵∠EBH=∠AEB+∠EAB,∴∠EBH=∠DAF+∠EAB.∵AE⊥AF,∴∠EAF=90°.∵∠BAD=32°,∴∠DAF+∠EAB=90°-32°=58°,∴∠EBH=58°.2、(2009武汉)如图1,在中,,于点,点是边上一点,连接交于,交边于点.(1)求证:;(2)当为边中点,时,如图2,求的值;(3)当为边中点,时,请直接写出的值.BBBAACOEDDECOF图1图2F解:(1),..,,.;BBADECOFG(2)解法一:作,交的延长线于.,是边的中点,.由(1)有,,.,,又,.,.,,,,.BBADECOF解法二:于,..设,则,.,.由(1)知,设,,.在中,...(3).3、(2009年上海市)已知∠ABC=90°,AB=2,BC=3,AD∥BC,P为线段BD上的动点,点Q在射线AB上,且满足(如图1所示).(1)当AD=2,且点与点重合时(如图2所示),求线段的长;(2)在图中,联结.当,且点在线段上时,设点之间的距离为,,其中表示△APQ的面积,表示的面积,求关于的函数解析式,并写出函数定义域;(3)当,且点在线段的延长线上时(如图3所示),求的大小.AADPCBQ图1DAPCB(Q))图2图3CADPBQ【关键词】等腰直角三角形相似三角形共高三角形的面积直角三角形相似的判定(1)∵Rt△ABD中,AB=2,AD=2,∴=1,∠D=45°∴PQ=PC即PB=PC,过点P作PE⊥BC,则BE=。而∠PBC=∠D=45°∴PC=PB=(2)在图8中,过点P作PE⊥BC,PF⊥AB于点F。∵∠A=∠PEB=90°,∠D=∠PBE∴Rt△ABD∽Rt△EPB∴设EB=3k,则EP=4k,PF=EB=3k∴,=∴函数定义域为FEFEADPCBFEFEADPCBQ图1DAPCB(Q))图2图3CADPBQ(3)答:90°证明:在图8中,过点P作PE⊥BC,PF⊥AB于点F。∵∠A=∠PEB=90°,∠D=∠PBE∴Rt△ABD∽Rt△EPB∴∴=∴Rt△PQF∽Rt△PCE∴∠FPQ=∠EPC∴∠EPC+∠QPE=∠FPQ+∠QPE=90°4、(2009年宁波市)如图1,在平面直角坐标系中,O为坐标原点,点A的坐标为,直线BC经过点,,将四边形OABC绕点O按顺时针方向旋转度得到四边形,此时直线、直线分别与直线BC相交于点P、Q.(1)四边形OABC的形状是,当时,的值是;(2)①如图2,当四边形的顶点落在轴正半轴时,求的值;②如图3,当四边形的顶点落在直线上时,求的面积.((Q)CBAOxP(图3)yQCBAOxP(图2)yCBAOyx(备用图)(第26题)(3)在四边形OABC旋转过程中,当时,是否存在这样的点P和点Q,使?若存在,请直接写出点P的坐标;若不存在,请说明理由.【关键词】相似三角形有关的计算和证明【答案】解:(1)矩形(长方形);.(2)①,,.,即,,.同理,,即,,..②在和中,..设,在中,,解得..(3)存在这样的点和点,使.点的坐标是,.对于第(3)题,我们提供如下详细解答,对学生无此要求.过点画于,连结,则,,,.设,QCQCBAOxPyH,,如图1,当点P在点B左侧时,,在中,,QCBAOxQCBAOxPyH,.②如图2,当点P在点B右侧时,,.在中,,解得.,.综上可知,存在点,,使.5、如图,在梯形ABCD中,,,,,点由B出发沿BD方向匀速运动,速度为1cm/s;同时,线段EF由DC出发沿DA方向匀速运动,速度为1cm/s,交于Q,连
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 美容院双十一活动方案策划
- 双11小活动策划方案
- 现服科技发展与创新人才培训模式探讨
- 汇报技巧构建高效商业汇报的核心要素
- 国庆节活动方案披萨
- 7 角的初步认识 第二课时(说课稿)-2023-2024学年二年级下册数学苏教版001
- Unit 11 Chinese festivals(period 1)(说课稿)-2023-2024学年沪教牛津版(深圳用)英语五年级下册001
- 16 家乡新变化(说课稿)2023-2024学年统编版道德与法治二年级上册
- 2023四年级数学上册 二 加减法的关系和加法运算律第5课时说课稿 西师大版
- 2023九年级物理下册 第十一章 物理学与能源技术11.3能源说课稿 (新版)教科版
- 统编小学《道德与法治》三年级上下册教材的解读
- 人教版(2024)英语七年级上册单词表
- 产业链竞争关联度
- TTJSFB 002-2024 绿色融资租赁项目评价指南
- 涵洞施工钢筋混凝土圆管涵
- 高考地理一轮复习学案+区域地理填图+亚洲
- 全新车位转让协议模板下载(2024版)
- 高中数学必修一试卷及答案
- 砌筑工考试卷及答案
- 呼吸治疗师进修汇报
- 智慧港口和自动化集装箱码头
评论
0/150
提交评论