2024届湖北省武汉为明学校高二数学第一学期期末学业水平测试试题含解析_第1页
2024届湖北省武汉为明学校高二数学第一学期期末学业水平测试试题含解析_第2页
2024届湖北省武汉为明学校高二数学第一学期期末学业水平测试试题含解析_第3页
2024届湖北省武汉为明学校高二数学第一学期期末学业水平测试试题含解析_第4页
2024届湖北省武汉为明学校高二数学第一学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖北省武汉为明学校高二数学第一学期期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直线与直线平行,且直线在轴上的截距比在轴上的截距大,则直线的方程为()A. B.C. D.2.如图,正四棱柱ABCD—A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为A. B.C. D.3.如果双曲线的一条渐近线方程为,且经过点,则双曲线的标准方程是()A. B.C. D.4.等差数列中,,则前项的和()A. B.C. D.5.已知,则下列说法中一定正确的是()A. B.C. D.6.在空间直角坐标系中,点关于轴的对称点为点,则点到直线的距离为()A. B.C. D.67.设双曲线C:的左、右焦点分别为,点P在双曲线C上,若线段的中点在y轴上,且为等腰三角形,则双曲线C的离心率为()A. B.2C. D.8.命题“,使”的否定是()A.,有 B.,有C.,使 D.,使9.设是等差数列,是其公差,是其前n项的和.若,,则下列结论不正确的是()A. B.C. D.与均为的最大值10.在下列各图中,每个图的两个变量具有相关关系的图是()A.(1)(2) B.(1)(3)C.(2) D.(2)(3)11.已知双曲线,过点作直线l与双曲线交于A,B两点,则能使点P为线段AB中点的直线l的条数为()A.0 B.1C.2 D.312.已知圆的方程为,则圆心的坐标为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知直线和平面,且;①若异面,则至少有一个与相交;②若垂直,则至少有一个与垂直;对于以上命题中,所有正确的序号是___________.14.甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是____________15.设为曲线上一点,,,若,则__________16.若两平行直线3x-2y-1=0,6x+ay+c=0之间的距离为,则的值为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线,直线与交于两点且(为坐标原点)(1)求抛物线的方程;(2)设,若直线的倾斜角互补,求的值18.(12分)曲线与曲线在第一象限的交点为.曲线是()和()组成的封闭图形.曲线与轴的左交点为、右交点为.(1)设曲线与曲线具有相同的一个焦点,求线段的方程;(2)在(1)的条件下,曲线上存在多少个点,使得,请说明理由.(3)设过原点的直线与以为圆心的圆相切,其中圆的半径小于1,切点为.直线与曲线在第一象限的两个交点为..当对任意直线恒成立,求的值.19.(12分)如图,在三棱柱中,=2,且,⊥底面ABC.E为AB中点(1)求证:平面;(2)求平面与平面CEB夹角的余弦值20.(12分)某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),┄,[80,90],并整理得到如下频率分布直方图:(1)已知样本中分数在[40,50)的学生有5人,试估计总体中分数小于40的人数;(2)试估计测评成绩的75%分位数;(3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例21.(12分)在中,角的对边分别为,已知,,且.(1)求角的大小;(2)若,面积为,试判断的形状,并说明理由.22.(10分)已知函数,当时,函数有极值1.(1)求函数的解析式;(2)若关于x的方程有一个实数根,求实数m的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】分析可知直线不过原点,可设直线的方程为,其中且,利用斜率关系可求得实数的值,化简可得直线的方程.【详解】若直线过原点,则直线在两坐标轴上的截距相等,不合乎题意,设直线的方程为,其中且,则直线的斜率为,解得,所以,直线的方程为,即.故选:A.2、D【解析】设AA1=2AB=2,因为,所以异面直线A1B与AD1所成角,,故选D.3、D【解析】根据渐近线方程设出双曲线方程,然后将点代入,进而求得答案.【详解】因为双曲线的一条渐近线方程为,所以设双曲线方程为,将代入得:,即双曲线方程为.故选:D.4、D【解析】利用等差数列下标和性质可求得,根据等差数列求和公式可求得结果.【详解】数列为等差数列,,解得:;.故选:D.5、B【解析】AD选项,举出反例即可;BC选项,利用不等式的基本性质进行判断.【详解】当,时,满足,此时,故A错误;因,所以,,,B正确;因为,所以,,故,C错误;当,时,满足,,,所以,D错误.故选:B6、C【解析】按照空间中点到直线的距离公式直接求解.【详解】由题意,,,的方向向量,,则点到直线的距离为.故选:C.7、A【解析】根据是等腰直角三角形,再表示出的长,利用三角形的几何性质即可求得答案.【详解】线段的中点在y轴上,设的中点为M,因为O为的中点,所以,而,则,为等腰三角形,故,由,得,又为等腰直角三角形,故,即,解得,即,故选:A.8、B【解析】根据特称命题的否定是全称命题即可得正确答案【详解】存在量词命题的否定,只需把存在量词改成全称量词,并把后面的结论否定,所以“,使”的否定为“,有”,故选:B.9、C【解析】由已知条件可以得出,,,即可得公差,再利用等差数列的性质以及前n项的和的性质可判断每个选项的正误,进而可得正确选项.【详解】由可得,由可得,故选项B正确;由可得,因为公差,故选项A正确,,所以,故选项C不正确;由于是等差数列,公差,,,,所以都是的最大值,故选项D正确;所以选项C不正确,故选:C10、D【解析】根据图形可得(1)具有函数关系;(2)(3)的散点分布在一条直线或曲线附近,具有相关关系;(4)的散点杂乱无章,不具有相关关系.【详解】对(1),所有的点都在曲线上,故具有函数关系;对(2),所有的散点分布在一条直线附近,具有相关关系;对(3),所有的散点分布在一条曲线附近,具有相关关系;对(4),所有的散点杂乱无章,不具有相关关系.故选:D.11、A【解析】先假设存在这样的直线,分斜率存在和斜率不存在设出直线的方程,当斜率k存在时,与双曲线方程联立,消去,得到关于的一元二次方程,直线与双曲线相交于两个不同点,则,,又根据是线段的中点,则,由此求出与矛盾,故不存在这样的直线满足题意;当斜率不存在时,过点的直线不满足条件,故符合条件的直线不存在.详解】设过点的直线方程为或,①当斜率存在时有,得(*)当直线与双曲线相交于两个不同点,则必有:,即又方程(*)的两个不同的根是两交点、的横坐标,又为线段的中点,,即,,使但使,因此当时,方程①无实数解故过点与双曲线交于两点、且为线段中点的直线不存在②当时,经过点的直线不满足条件.综上,符合条件的直线不存在故选:A12、A【解析】将圆的方程配成标准方程,可求得圆心坐标.【详解】圆的标准方程为,圆心的坐标为.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、①②【解析】假设与都不相交得到,得到①正确,若不垂直,上取一点,作交于,得到,得到②正确,得到答案.【详解】若与都不相交,,,则,同理,故,与异面矛盾,①正确;若不垂直,上取一点,作交于,,,故,,故,,,故,,,故,②正确.故答案为:①②.14、18【解析】本题应注意分情况讨论,即前五场甲队获胜的两种情况,应用独立事件的概率的计算公式求解.题目有一定的难度,注重了基础知识、基本计算能力及分类讨论思想的考查【详解】前四场中有一场客场输,第五场赢时,甲队以获胜的概率是前四场中有一场主场输,第五场赢时,甲队以获胜的概率是综上所述,甲队以获胜的概率是【点睛】由于本题题干较长,所以,易错点之一就是能否静心读题,正确理解题意;易错点之二是思维的全面性是否具备,要考虑甲队以获胜的两种情况;易错点之三是是否能够准确计算15、4【解析】化简曲线方程,得到双曲线的一支,结合双曲线定义求出结果【详解】由,得,即,故为双曲线右支上一点,且分别为该双曲线的左、右焦点,则,.【点睛】本题考查了双曲线的定义,解题时要先化简曲线方程,然后再结合双曲线定义求出结果,较为基础16、±1【解析】由题意得=≠,∴a=-4且c≠-2,则6x+ay+c=0可化为3x-2y+=0,由两平行线间的距离公式,得=,解得c=2或c=-6,∴=±1三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)利用韦达定理法即求;(2)由题可求,,再结合条件即得.【小问1详解】设,,由,得,故,由,可得,即,∴,故抛物线的方程为:;【小问2详解】设的倾斜角为,则的倾斜角为,∴由,得,∴,∴,同理,由,得,∴,即,故.18、(1)或;(2)一共2个,理由见解析;(3)答案见解析.【解析】(1)先求曲线的焦点,再求点的坐标,分焦点为左焦点或右焦点,求线段的方程;(2)分点在双曲线或是椭圆的曲线上,结合条件,说明点的个数;(3)首先设出直线和圆的方程,利用直线与圆相切,以及直线与曲线相交,分别表示,并计算得到的值.【详解】(1)两个曲线相同的焦点,,解得:,即双曲线方程是,椭圆方程是,焦点坐标是,联立两个曲线,得,,即,当焦点是右焦点时,线段的方程当焦点时左焦点时,,,线段的方程(2),假设点在曲线上单调递增∴所以点不可能在曲线上所以点只可能在曲线上,根据得可以得到当左焦点,,同样这样的使得不存在所以这样的点一共2个(3)设直线方程,圆方程为直线与圆相切,所以,,根据得到补充说明:由于直线的曲线有两个交点,受参数的影响,蕴含着如下关系,∵,当,存在,否则不存在这里可以不需讨论,因为题目前假定直线与曲线有两个交点的大前提,当共焦点时存在不存在.【点睛】关键点点睛:本题考查直线与椭圆和双曲线相交的综合应用,本题的关键是曲线由椭圆和双曲线构成,所以研究曲线上的点时,需分两种情况研究问题.19、(1)证明见解析;(2).【解析】(1)连接与交于点O,连接OE,得到,再利用线面平行的判定定理证明即可;(2)根据,底面,建立空间直角坐标系,求得平面的一个法向量,再根据底面,得到平面一个法向量,然后由夹角公式求解.【小问1详解】如图所示:连接与交于点O,连接OE,如图,由分别为的中点所以,又平面,平面,所以平面;【小问2详解】由,底面,故底面建立如图所示空间直角坐标系:则,所以,设平面的一个法向量为:,则,即,令,则,则,因为底面,所以为平面一个法向量,所以所以平面与平面CEB夹角的余弦值为.20、(1)20人(2)(3)【解析】(1)根据频率分布直方图先求出样本中分数在[40,90)的频率,即可解出;(2)先根据频率分布直方图判断出75%分位数在[70,80)之间,即可根据分位数公式算出;(3)根据频率分布直方图知分数不小于70分的人数中男女各占30人,从而可知样本中男生有60人,女生有40人,即可求出总体中男生和女生人数的比例【小问1详解】由频率分布直方图知,分数在[50,90)频率为(0.01+0.02+0.04+0.02)×10=0.9,在样本中分数在[50,90)的人数为100×0.9=90(人),在样本中分数在[40,90)的人数为95人,所以分数在[40,90)的人数为400×0.95=380(人),总体中分数小于40的人数为20人【小问2详解】测试成绩从低到高排序,占人数75%的人分数在[70,80)之间,所以估计测评成绩的75%分位数为【小问3详解】由频率分布直方图知,分数不小于70分的人数共有60人,由已知男女各占30人,从而样本中男生有60人,女生有40人,故总体中男生与女生的比例为21、(1);(2)为等边三角形【解析】(1)由(2b﹣c)cosA﹣acosC=0及正弦定理,得sinB(2cosA﹣1)=0,从而得角A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论