2023-2024学年河南省豫南六市高二数学第一学期期末统考模拟试题含解析_第1页
2023-2024学年河南省豫南六市高二数学第一学期期末统考模拟试题含解析_第2页
2023-2024学年河南省豫南六市高二数学第一学期期末统考模拟试题含解析_第3页
2023-2024学年河南省豫南六市高二数学第一学期期末统考模拟试题含解析_第4页
2023-2024学年河南省豫南六市高二数学第一学期期末统考模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年河南省豫南六市高二数学第一学期期末统考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线的渐近线方程为,则该双曲线的离心率等于()A. B.C.2 D.42.设正方体的棱长为,则点到平面的距离是()A. B.C. D.3.方程有两个不同的解,则实数k的取值范围为()A. B.C. D.4.已知圆过点,,且圆心在轴上,则圆的方程是()A. B.C. D.5.已知函数在上单调递减,则实数的取值范围是()A. B.C. D.6.如图所示,在平行六面体中,,,,点是的中点,点是上的点,且,则向量可表示为()A. B.C. D.7.年月日我国公布了第七次全国人口普查结果.自新中国成立以来,我国共进行了七次全国人口普查,如图为我国历次全国人口普查人口性别构成及总人口性别比(以女性为,男性对女性的比例)统计图,则下列说法错误的是()A.第五次全国人口普查时,我国总人口数已经突破亿B.第一次全国人口普查时,我国总人口性别比最高C.我国历次全国人口普查总人口数呈递增趋势D.我国历次全国人口普查总人口性别比呈递减趋势8.已知双曲线,则该双曲线的实轴长为()A.1 B.2C. D.9.已知双曲线(,)的左,右焦点分别为,.若双曲线右支上存在点,使得与双曲线的一条渐近线垂直并相交于点,且,则双曲线的渐近线方程为()A. B.C. D.10.已知函数,则()A.1 B.2C.3 D.511.已知圆与圆没有公共点,则实数a的取值范围为()A. B.C. D.12.数学家欧拉在1765年发现,任意三角形的外心、重心、垂心位于同一条直线上,这条直线称为欧拉线.已知的顶点,,若其欧拉线的方程为,则顶点的坐标为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设f(x)=xlnx,若f′(x0)=2,则x0=________14.已知椭圆和双曲线有相同的焦点和,设椭圆和双曲线的离心率分别为,,为两曲线的一个公共点,且(为坐标原点).若,则的取值范围是______15.在三棱锥中,点Р在底面ABC内的射影为Q,若,则点Q定是的______心16.已知焦点为F的抛物线的方程为,点Q的坐标为,点P在抛物线上,则点P到y轴的距离与到点Q的距离的和的最小值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在直三棱柱中,,,.M为侧棱的中点,连接,,CM.(1)证明:AC平面;(2)证明:平面;(3)求二面角的大小.18.(12分)已知圆(1)若一直线被圆C所截得的弦的中点为,求该直线的方程;(2)设直线与圆C交于A,B两点,把的面积S表示为m的函数,并求S的最大值19.(12分)已知椭圆的左右焦点分别为,,经过左焦点的直线与椭圆交于A,B两点(异于左右顶点)(1)求△的周长;(2)求椭圆E上的点到直线距离的最大值20.(12分)已知点为椭圆C的右焦点,P为椭圆上一点,且(O为坐标原点),.(1)求椭圆C的标准方程;(2)经过点的直线l与椭圆C交于A,B两点,求弦的取值范围.21.(12分)(1)已知:方程表示双曲线;:关于的不等式有解.若为真,求的取值范围;(2)已知,,.若p是q的必要不充分条件,求实数m的取值范围.22.(10分)已知椭圆,离心率为,椭圆上任一点满足(1)求椭圆的方程;(2)若动直线与椭圆相交于、两点,若坐标原点总在以为直径的圆外时,求的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由双曲线的渐近线方程,可得,再由的关系和离心率公式,计算即可得到所求值【详解】解:双曲线的渐近线方程为,由题意可得即,可得由可得,故选:A.2、D【解析】建立空间直角坐标系,根据空间向量所学点到面的距离公式求解即可.【详解】建立如下图所示空间直角坐标系,以为坐标原点,所在直线为轴,所在直线为轴,所在直线为轴.因为正方体的边长为4,所以,,,,,所以,,,设平面的法向量,所以,,即,设,所以,,即,设点到平面的距离为,所以,故选:D.3、C【解析】转化为圆心在原点半径为1的上半圆和表示恒过定点的直线始终有两个公共点,结合图形可得答案.【详解】令,平方得表示圆心在原点半径为1的上半圆,表示恒过定点的直线,方程有两个不同的解即半圆和直线要始终有两个公共点,如图圆心到直线的距离为,解得,当直线经过时由得,当直线经过时由得,所以实数k的取值范围为.故选:C.4、B【解析】根据圆心在轴上,设出圆的方程,把点,的坐标代入圆的方程即可求出答案.【详解】因为圆的圆心在轴上,所以设圆的方程为,因为点,在圆上,所以,解得,所以圆的方程是.故选:B.5、A【解析】由题意,在上恒成立,只需满足即可求解.【详解】解:因为,所以,因为函数在上单调递减,所以在上恒成立,只需满足,即,解得故选:A.6、D【解析】根据空间向量加法和减法的运算法则,以及向量的数乘运算即可求解.【详解】解:因为在平行六面体中,,,,点是的中点,点是上的点,且,所以,故选:D.7、D【解析】根据统计图判断各选项的对错.【详解】由统计图第五次全国人口普查时,男性和女性人口数都超过6亿,故总人口数超过12亿,A对,由统计图,第一次全国人口普查时,我国总人口性别比为107.56,超过余下几次普查的人口的性别比,B对,由统计图可知,我国历次全国人口普查总人口数呈递增趋势,C对,由统计图可知,第二次,第三次,第四次,第五次时总人口性别比呈递增趋势,D错,D错,故选:D.8、B【解析】根据给定的双曲线方程直接计算即可作答.【详解】双曲线的实半轴长,所以该双曲线的实轴长为2.故选:B9、B【解析】利用渐近线方程和直线解出Q点坐标,再由得P点坐标,代入双曲线方程得到a、b、c的齐次式可解.【详解】如图,因为与渐近线垂直所以的斜率为,方程为解的Q的坐标为设P点坐标为则,因为,所以,得点P坐标为,代入得:所以,即所以渐近线方程为故选:B.10、C【解析】利用导数的定义,以及运算法则,即可求解.【详解】,,所以,所以故选:C11、B【解析】求出圆、的圆心和半径,再由两圆没有公共点列不等式求解作答.【详解】圆的圆心,半径,圆的圆心,半径,,因圆、没有公共点,则有或,即或,又,解得或,所以实数a的取值范围为.故选:B12、A【解析】设,计算出重心坐标后代入欧拉方程,再求出外心坐标,根据外心的性质列出关于的方程,最后联立解方程即可.【详解】设,由重心坐标公式得,三角形的重心为,,代入欧拉线方程得:,整理得:①的中点为,,的中垂线方程为,即联立,解得的外心为则,整理得:②联立①②得:,或,当,时,重合,舍去顶点的坐标是故选:A【点睛】关键点睛:解决本题的关键一是求出外心,二是根据外心的性质列方程.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】f(x)=xlnx∴f'(x)=lnx+1则f′(x0)=lnx0+1=2解得:x0=e14、【解析】设出半焦距c,用表示出椭圆的长半轴长、双曲线的实半轴长,由可得为直角三角形,由此建立关系即可计算作答,【详解】设椭圆的长半轴长为,双曲线的实半轴长为,它们的半焦距为c,于是得,,由椭圆及双曲线的对称性知,不妨令焦点和在x轴上,点P在y轴右侧,由椭圆及双曲线定义得:,解得,,因,即,而O是线段的中点,因此有,则有,即,整理得:,从而有,即有,又,则有,即,解得,所以的取值范围是.故答案为:【点睛】方法点睛:求解椭圆或双曲线的离心率的三种方法:①定义法:通过已知条件列出方程组,求得值,根据离心率的定义求解离心率;②齐次式法:由已知条件得出关于的二元齐次方程,然后转化为关于的一元二次方程求解;③特殊值法:通过取特殊值或特殊位置,求出离心率.15、外【解析】由可得,故是的外心.【详解】解:如图,∵点在底面ABC内的射影为,∴平面又∵平面、平面、平面,∴、、.在和中,,∴,∴同理可得:,故故是的外心.故答案为:外.16、##【解析】利用定义将所求距离之和的最小值问题,转化为的最小值问题.【详解】焦点F坐标为,抛物线准线为,如图,作垂直于准线于A,交y轴于B,.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见详解;(2)证明见详解;(3)【解析】小问1:由于,根据线面平行判定定理即可证明;小问2:以为原点,分别为轴建立空间坐标系,根据向量垂直关系即可证明;小问3:分别求得平面与平面的法向量,根据向量夹角公式即可求解【小问1详解】在直三棱柱中,,且平面,平面所以AC平面;【小问2详解】因为,故以为原点,分别为轴建立空间坐标系如图所示:则,所以则所以又平面,平面故平面;【小问3详解】由,得,设平面的一个法向量为则得又因为平面的一个法向量为所以所以二面角的大小为18、(1)(2),最大值为.【解析】(1)利用垂径定理求出斜率,即可求出直线的方程;(2)利用几何法表示出弦长与d的关系,利用基本不等式求出的面积S的最大值【小问1详解】圆化为标准方程为:.则.设所求的直线为m.由圆的几何性质可知:,所以,所以所求的直线为:,即.【小问2详解】设圆心C到直线l的距离为d,则,且,所以因为直线与圆C交于A,B两点,所以,解得:且.而的面积:因为所以(其中时等号成立).所以S的最大值为.19、(1);(2).【解析】(1)利用椭圆的定义求△的周长;(2)设直线与椭圆相切,联立方程求参数m,与之间的距离的最大值,即为椭圆E上的点到直线l距离的最大值.【小问1详解】已知椭圆E方程为,所以,△的周长为,其中,所以△的周长为.【小问2详解】设直线与直线l平行且与椭圆相切,则,得,即,令,解得,所以,与之间的距离,即椭圆E上的点到直线l距离的最大值为20、(1)(2)【解析】(1)利用椭圆定义求得椭圆的即可解决;(2)经过点的直线l分为斜率不存在和存在两种情况,分别去求弦,再去求其取值范围即可.【小问1详解】由题意得.记左焦点为,,则,,解得.由椭圆定义得:,则,所以椭圆C的方程为:.【小问2详解】①当直线l的斜率不存在时,.②当直线l的斜率存在时,设斜率为k,则l的方程为.联立椭圆与直线的方程(由于点在椭圆内,∴成立),且,,令,则,,,由得,综上所述,弦的取值范围为.【点睛】(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x(或y)建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形21、(1)1m2;(2)(0,1]【解析】(1)由pq为真,可得p真且q假,然后分别求出p真,q假时的的取值范围,再求交集即可,(2)求得p:1x2,再由p是q的必要不充分条件,得,解不等式组可求得答案【详解】(1)因为pq为真,所以p真且q假,p真:m1m301m3,q假,则不等式无

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论