第四讲 果实成熟_第1页
第四讲 果实成熟_第2页
第四讲 果实成熟_第3页
第四讲 果实成熟_第4页
第四讲 果实成熟_第5页
已阅读5页,还剩54页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

果实成熟机制果实成熟是指果实在发育后期阶段生理生化变化的总和,并通过果实从外观到内部发生了一系列变化使果实达到可食状态成为有价值的农业商品.呼吸跃变与乙烯释放果实成熟过程的时色、香、味变化细胞壁水解酶与果实软化遗传工程在果实成熟中的应用一、呼吸跃变(respiratoryclimacteric)果实在成熟过程中,部分果实的呼吸速率最初较低,至成熟末期突然升高而后下降的现象.

果实成熟过程中的呼吸速率变化1.呼吸跃变类型:

※根据果实在成熟前是否出现呼吸高峰将果实分为跃变型与非跃变型果实两种.(1)呼吸跃变型果实:

果实呼吸跃变是果实成熟与衰老之间不可逆变化的分界线.一般果实在达到呼吸跃变高峰时其鲜食品质最佳,其后迅速下降.跃变型果实

跃变型果实生长在到达呼吸高峰时果实生长已处于平稳阶段.(2)非跃变型果实:这类果实在成熟期不发生呼吸跃变现象;又可将这类果实分为呼吸渐减型和呼吸后期上升型。呼吸渐减型:指果实在成熟期,呼吸强度一直在稳定地下降着,其间没有明显的上升阶段,包括柑桔、葡萄、樱桃等。呼吸后期上升型:在果实成熟后期有一个小的呼吸高峰,包括草莓、柠檬、柑橘、凤梨等.

成熟过程中非跃变型果实的呼吸速率2呼吸跃变与乙烯跃变的关系对于跃变型果实而言,呼吸跃变常常伴随着乙烯跃变,.

呼吸跃变是由于果实中产生乙烯的结果乙烯高峰的出现可以在呼吸高峰之前,之中或之后几种果实内源乙烯含量-----------------------------------------------------------------------------------------------------果实乙烯(μl/L)果实乙烯(μl/L)-----------------------------------------------------------------------------------------------------高峰型西番莲果466~530

苹果25~2500李0.14~0.23

梨80番茄3.6~29.8

桃0.9~20.7

油桃3.6~602柠檬0.11~0.17

鳄梨28.9~74.2酸橙0.30~1.96

香蕉0.05~2.1橙0.13~0.32

芒果0.04~3.0菠萝0.16~0.40-----------------------------------------------------------------------------------------------------

摘自Burg,S.P.,等,Theroleofethyleneinfruitripening.Plantphysiol.跃变型果实和非跃变型果实的重要区别主要区别:呼吸变化趋势乙烯生成的特性和对乙烯的反应有区别。跃变型果实中乙烯生成有两个调节系统系统Ⅰ:负责呼吸跃变前果实中低速率的基础乙烯生成;系统Ⅱ:负责呼吸跃变时乙烯的自我催化释放,其乙烯释放效率很高。非跃变型果实成熟过程中只有系统Ⅰ,缺乏系统Ⅱ,乙烯生成速率低而平衡。两种类型果实对乙烯的反应跃变型果实:

外源乙烯只在跃变前起作用,诱导呼吸上升;同时启动系统Ⅱ,形成乙烯自我催化,促进乙烯大量释放,但不改变呼吸跃变顶峰的高度,且与处理用乙烯浓度关系不大,其反应是不可逆的。非跃变型果实:

外源乙烯在整个成熟期间都能促进呼吸作用增强,且与处理乙烯的浓度密切相关,其反应是可逆的。同时,外源乙烯不能促进内源乙烯增加。3呼吸跃变产生的原因※※果实发育过程中大量物质积累→糖酵解加快→呼吸底物↑→水解酶,呼吸酶活性↑→果皮透性↑→内部氧化速度加快→呼吸作用↑物质分解↑→成熟↑※内源乙烯增加→出现乙烯高峰→乙烯与细胞膜结合→增加膜的透性→加快气体交换→增强氧化作用→诱导呼吸底物mRNA合成→提高呼吸底物活性→并显著诱导抗氰呼吸

产生呼吸跃变的原因:(1)随着果实发育,细胞内线粒体增多,呼吸活性增高;(2)产生了天然的氧化磷酸化解偶联,刺激了呼吸活性的提高:(3)乙烯释放量增加,诱导抗氰呼吸加强。(4)糖酵解关键酶被活化,呼吸活性增强。果实呼吸跃变是果实成熟的一种特征,大多数果实成熟是与呼吸的跃变相伴随的,呼吸跃变结束即意味着果实已达成熟。在果实贮藏或运输中,可以通过降低温度,推迟呼吸跃变发生的时间,另一是增加周围CO2的浓度,降低呼吸跃变发生的强度,这样就可达到延迟成熟,保持鲜果,防止腐烂的目的。二、果实成熟时色、香、味的变化果实变甜:淀粉→糖酸味减少:有机酸转化成糖或分解。涩味消失:单宁分解香味产生:酯类物质、醛类物质果实变软:果肉细胞壁中纤维素、果胶分解颜色变艳:叶绿素分解,花青素合成显红色。三细胞壁水解酶与果实软化细胞壁组成成分,结构细胞壁合成,生长与功能细胞壁相关水解酶与果实软化细胞壁组成成分,结构与特性

(1)细胞壁的组成成分构成细胞壁的成分中,90%左右是多糖,10%左右是蛋白质、酶类以及脂肪酸等.细胞壁中的多糖主要是纤维素、半纤维素和果胶类,它们是由葡萄糖、阿拉伯糖、半乳糖醛酸等聚合而成.纤维素是β—(1,4)无分枝多聚葡萄糖。对细胞壁的延展性起主导作用。多条纤维素链靠分子内氢键构成微纤丝,在细胞壁上与半纤维素构成网络结构。果胶是一组多糖类物质,存在于初生细胞壁和细胞间隙中。果胶分子是由α—(1—4)连接的D—半乳糖醛酸组成.分为果胶酸、果胶和原果胶果胶酸(pecticacid)由约100个半乳糖醛酸通过α-1,4-键连接而成的直链。水溶性,很容易与钙起作用生成果胶酸钙。它主要存在于中层中.果胶(pectin)果胶是半乳糖醛酸酯和少量半乳糖醛酸通过α-1,4-糖苷键连接而成的长链高分子化合物,分子量在25000~50000之间,每条链含200个以上的半乳糖醛酸残基。果胶能溶于水,存在于中层和初生壁中,在细胞质或液泡中也有存在。

原果胶(protopectin)分子量比果胶酸和果胶大,主要存在于初生壁中,不溶于水,在稀酸和原果胶酶的作用下可转变为可溶性的果胶。

细胞壁结构蛋白富烃脯氨酸蛋白(hydroxy-proline-richglycoprotein,HRGP)富脯氨酸蛋白(proline-richprotein,PRP)富甘氨酸蛋白(glycine-rich-protein,GRP)伸展蛋白(extensin)初生壁的“经纬”模型初生壁是由两个交联在一起的多聚物——纤维素的微纤丝和穿过微纤丝的伸展素网络交织而成,悬在亲水果胶——半纤维素胶体中。在这个交织结构中,微纤丝是经(warp),平行于壁的平面排列;而伸展素“纬”(weft),垂直于壁的平面排列.2,细胞壁合成,生长与功能

(1)合成与生长合成细胞壁的场所在内质网和高尔基体所合成的壁成分运输:由高尔基体分泌小泡运输,小泡运至质膜并与膜融合,小泡中成壁物质被释放至壁中。成壁物质的合成过程受核基因控制,并能被IAA等激素诱导.(2),细胞壁的功能维持细胞形状,控制细胞生长物质运输与信息传递防御与抗性3.细胞壁相关水解酶与果实软化

(1)种类参与果胶与纤维素,半纤维素降解的酶类主要有多聚半乳糖醛酸酶(polygalacturon

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论