新疆昌吉市教育共同体2024届八年级数学第一学期期末学业水平测试试题含解析_第1页
新疆昌吉市教育共同体2024届八年级数学第一学期期末学业水平测试试题含解析_第2页
新疆昌吉市教育共同体2024届八年级数学第一学期期末学业水平测试试题含解析_第3页
新疆昌吉市教育共同体2024届八年级数学第一学期期末学业水平测试试题含解析_第4页
新疆昌吉市教育共同体2024届八年级数学第一学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

新疆昌吉市教育共同体2024届八年级数学第一学期期末学业水平测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.下列运算中正确的是()A.x2÷x8=x﹣4 B.a•a2=a2 C.(a3)2=a6 D.(3a)3=9a32.若正多边形的内角和是,则该正多边形的一个外角为()A. B. C. D.3.计算,结果用科学记数法表示正确的是()A. B. C. D.4.已知:如图,是的中线,,点为垂足,,则的长为()A. B. C. D.5.甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为千米/小时,依据题意列方程正确的是()A. B. C. D.6.如图,在平面直角坐标系中,点,,,和,,,分别在直线和轴上,,,,是以,,,为顶点的等腰直角三角形.如果点,那么点的纵坐标是()A. B. C. D.7.如图,已知直线y=x+4与x轴、y轴分别交于A、B两点,C点在x轴正半轴上且OC=OB,点D位于x轴上点C的右侧,∠BAO和∠BCD的角平分线AP、CP相交于点P,连接BC、BP,则∠PBC的度数为()A.43 B.44 C.45 D.468.将一副直角三角尺如图放置,已知AE∥BC,则∠AFD的度数是()A.45°B.50°C.60°D.75°9.如图,ABCD是正方形场地,点E在DC的延长线上,AE与BC相交于点F,有甲、乙、丙三名同学同时从点A出发,甲沿着A﹣B﹣F﹣C的路径行走至C,乙沿着A﹣F﹣E﹣C﹣D的路径行走至D,丙沿着A﹣F﹣C﹣D的路径行走至D,若三名同学行走的速度都相同,则他们到达各自的目的地的先后顺序(由先至后)是()A.甲乙丙 B.甲丙乙 C.乙丙甲 D.丙甲乙10.如图,在3×3的正方形网格中有四个格点A,B,C,D,以其中一个点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点可能是()A.点A B.点B C.点C D.点D11.如图,在四边形ABCD中,∠A=∠C=90°,∠B=α,在AB、BC上分别找一点E、F,使△DEF的周长最小.此时,∠EDF=()A.α B. C. D.180°-2α12.已知直线y=-x+4与y=x+2如图所示,则方程组的解为()A. B. C. D.二、填空题(每题4分,共24分)13.等腰三角形有一个外角是100°,那么它的的顶角的度数为_____________.14.若是一个完全平方式,则m的值是__________.15.已知,则的值等于___________.16.如图,等腰直角中,,为的中点,,为上的一个动点,当点运动时,的最小值为____17.分解因式:_______.18.使代数式有意义的x的取值范围是______________.三、解答题(共78分)19.(8分)如图,中,,点在上,点在上,于点于点,且.求证:.20.(8分)如图,AB=AC,AD=AE,∠BAD=∠CAE,求证:BE=CD.21.(8分)如图,方格纸中每个小正方形的边长为1,四边形ABCD的顶点都在格点上.(1)在方格纸上建立平面直角坐标系,使四边形ABCD的顶点A,C的坐标分别为(﹣5,﹣1),(﹣3,﹣3),并写出点D的坐标;(2)在(1)中所建坐标系中,画出四边形ABCD关于x轴的对称图形A1B1C1D1,并写出点B的对应点B1的坐标.22.(10分)如图,在平面直角坐标系xOy中,一次函数y=﹣x+n的图象与正比例函数y=2x的图象交于点A(m,4).(1)求m、n的值;(2)设一次函数y=﹣x+n的图象与x轴交于点B,求△AOB的面积;(3)直接写出使函数y=﹣x+n的值小于函数y=2x的值的自变量x的取值范围.23.(10分)如图,三个顶点的坐标分别为,,.(1)请画出关于轴成轴对称的图形,并写出、、的坐标;(2)求的面积;(3〉在轴上找一点,使的值最小,请画出点的位置.24.(10分)如图,在平面直角坐标系中,直线交轴于点,交轴于点,以为边作正方形,请解决下列问题:(1)求点和点的坐标;(2)求直线的解析式;(3)在直线上是否存在点,使为等腰三角形?若存在,请直接写出点的坐标;若不存在,说明理由.25.(12分)如图,在中,,点为边上的动点,点从点出发,沿边向点运动,当运动到点时停止,若设点运动的时间为秒,点运动的速度为每秒2个单位长度.(1)当时,=,=;(2)求当为何值时,是直角三角形,说明理由;(3)求当为何值时,,并说明理由.26.如图,一次函数的图像与轴交于点,与轴交于点,且经过点.(1)当时;①求一次函数的表达式;②平分交轴于点,求点的坐标;(2)若△为等腰三角形,求的值;(3)若直线也经过点,且,求的取值范围.

参考答案一、选择题(每题4分,共48分)1、C【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【题目详解】A、底数不变指数相减,故A错误;B、底数不变指数相加,故B错误;C、底数不变指数相乘,故C正确;D、积的乘方等于乘方的积,故D错误;故选C.【题目点拨】本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.2、C【分析】根据多边形的内角和公式求出多边形的边数,再根据多边形的外角和是固定的,依此可以求出多边形的一个外角.【题目详解】正多边形的内角和是,多边形的边数为多边形的外角和都是,多边形的每个外角故选.【题目点拨】本题主要考查了多边形的内角和与外角和之间的关系,关键是记住内角和的公式与外角和的特征,难度适中.3、B【分析】把2与5相乘、10-4与10-2相乘,后者根据同底数幂的乘法法则得到10-4-2,然后写成a×10n(1≤a<10,n为整数)的形式即可.【题目详解】===.故选:B.【题目点拨】考查了同底数幂的乘法,解题关键利用了:am•an=am+n(其中a≠0,m、n为整数)进行计算.4、B【分析】先证△BDF≌△CDE,得到DE=3,再证∠2=60°,根据30°角所对的直角边是斜边的一半,求出DC的长,再求BC的长即可【题目详解】解:∵AD是△ABC中线,在△BDF和△CDE中,

∴△BDF≌△CDE(AAS).∴DF=DE,∵EF=6,

∴DE=3,

∵,∠1+∠2=180°,∴∠2=60°,∴∠DCE=30°,∴DC=6,∴BC=12,故选B.【题目点拨】本题考查全等三角形的判断和性质,垂直的定义,中线的定义,解题的关键是熟练掌握全等三角形的判定.5、C【解题分析】由实际问题抽象出方程(行程问题).【分析】∵甲车的速度为千米/小时,则乙甲车的速度为千米/小时∴甲车行驶30千米的时间为,乙车行驶40千米的时间为,∴根据甲车行驶30千米与乙车行驶40千米所用时间相同得.故选C.6、A【分析】设点A2,A3,A4…,A2019坐标,结合函数解析式,寻找纵坐标规律,进而解题.【题目详解】解:在直线,,,设,,,,,,,,,则有,,,,又△,△,△,,都是等腰直角三角形,,,,.将点坐标依次代入直线解析式得到:,,,,,又,,,,,,故选:A.【题目点拨】此题主要考查了一次函数点坐标特点,等腰直角三角形斜边上高等于斜边长一半,解题的关键是找出规律.7、C【分析】依据一次函数即可得到AO=BO=4,再根据OC=OB,即可得到,,过P作PE⊥AC,PF⊥BC,PG⊥AB,即可得出BP平分,进而得到.【题目详解】在中,令,则y=4;令y=0,则,∴,,∴,又∵CO=BO,BO⊥AC,∴与是等腰直角三角形,∴,,如下图,过P作PE⊥AC,PF⊥BC,PG⊥AB,∵和的角平分线AP,CP相交于点P,∴,∴BP平分,∴,故选:C.【题目点拨】本题主要考查了角平分线的性质,熟练掌握角平分线性质证明方法是解决本题的关键.8、D【解题分析】本题主要根据直角尺各角的度数及三角形内角和定理解答.解:∵∠C=30°,∠DAE=45°,AE∥BC,∴∠EAC=∠C=30°,∠FAD=45﹣30=15°,在△ADF中根据三角形内角和定理得到:∠AFD=180﹣90﹣15=75°.故选D.9、B【分析】本题考查了正方形的性质,直角三角形的性质的应用,题目比较典型,难度适中.根据正方形的性质得出AB=BC=CD=AD,∠B=∠ECF,根据直角三角形得出AF>AB,EF>CF,分别求出甲、乙、丙行走的距离,再比较即可.【题目详解】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=90°,甲行走的距离是AB+BF+CF=AB+BC=2AB;乙行走的距离是AF+EF+EC+CD;丙行走的距离是AF+FC+CD,∵∠B=∠ECF=90°,∴AF>AB,EF>CF,∴AF+FC+CD>2AB,AF+FC+CD<AF+EF+EC+CD,∴甲比丙先到,丙比乙先到,即顺序是甲丙乙,故选B.【题目点拨】本题考查1.正方形的性质;2.线段的性质:两点之间线段最短;3.比较线段的长短.10、D【分析】直接利用已知网格结合三个点中存在两个点关于一条坐标轴对称,可得出原点位置.【题目详解】如图所示:原点可能是D点.故选D.【题目点拨】此题主要考查了关于坐标轴对称点的性质,正确建立坐标系是解题关键.11、D【分析】作点D关于BA的对称点P,点D关于BC的对称点Q,连接PQ,交AB于E,交BC于F,则点E,F即为所求.根据四边形内角和等于360°,可得∠ADC的度数,进而可得∠P+∠Q的度数,由对称性可得∠EDP+∠FDQ的度数,进而即可求解.【题目详解】作点D关于BA的对称点P,点D关于BC的对称点Q,连接PQ,交AB于E,交BC于F,则点E,F即为所求.∵四边形ABCD中,∠A=∠C=90°,∠B=α,∴∠ADC=180°-α,∴∠P+∠Q=180°-∠ADC=α,由对称性可知:EP=ED,FQ=FD,∴∠P=∠EDP,∠Q=∠FDQ,∴∠EDP+∠FDQ=∠P+∠Q=α,∴故选D.【题目点拨】本题主要考查轴对称的性质和应用,四边形的内角和定理以及三角形的内角和定理,掌握掌握轴对称图形的性质是解题的关键.12、B【解题分析】二元一次方程组的解就是组成二元一次方程组的两个方程的公共解,即两条直线y=-x+4与y=x+2的交点坐标.故选B点睛:本题考查了一次函数与二元一次方程组.二元一次方程组的解就是组成该方程组的两条直线的图象的交点.二、填空题(每题4分,共24分)13、80°或20°【分析】根据等腰三角形的性质,已知等腰三角形有一个外角为100°,可知道三角形的一个内角.但没有明确是顶角还是底角,所以要根据情况讨论顶角的度数.【题目详解】等腰三角形有一个外角是100°即是已知一个角是80°,这个角可能是顶角,也可能是底角,

当是底角时,顶角是180°-80°-80°=20°,因而顶角的度数为80°或20°.

故填80°或20°.【题目点拨】本题考查了等腰三角形的性质;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.14、1或-1【分析】根据完全平方式的形式即可求出m的值.【题目详解】根据题意得,或,故答案为:1或-1.【题目点拨】本题主要考查完全平方式,掌握完全平方式的形式是解题的关键.15、【分析】先进行配方计算出m,n的值,即可求出的值.【题目详解】,则,故答案为:.【题目点拨】本题是对完全平方非负性的考查,熟练掌握配方知识和完全平方非负性是解决本题的关键.16、4【分析】作点C关于AB的对称点C′,连接DC′、BC′,连接DC′交AB于点P,由轴对称的性质易得EC=EC′,则线段DC′的长度即为PC+PD的最小值,由等腰直角三角形的性质易得∠CBC′=∠CBA+∠C′BA=90,在Rt△DBC′中,利用勾股定理即可求得线段DC′的长度,问题便可得以解决.【题目详解】∵,为的中点,,∴设CD=x,则AC=2x,∴x2+(2x)2=42解得x=,∴BD=CD=,BC=AC=如图所示,作点C关于AB的对称点C′,连接DC′、BC′,连接DC′交AB于点E.∵点C和点C′关于AB对称,∴PC=PC′,∠CBA=∠C′BA,∴PC+PD=PC′+PD=DC′,此时PC+PD的长最小.∵△ABC是等腰直角三角形,AC=BC,∴∠CBC′=∠CBA+∠C′BA=45+45=90.∴在Rt△DBC′中,由勾股定理得DC′==,∴PC+PD的最小值为4.故答案为:4.【题目点拨】此题主要考查轴对称的性质,解题的关键是熟知等腰三角形的性质及勾股定理的应用.17、【分析】根据提公因式法即可解答.【题目详解】解:故答案为:.【题目点拨】本题考查了分解因式,解题的关键是掌握提公因式法,准确提出公因式.18、【分析】根据二次根式中被开方数大于等于0得到,再解不等式即可求解.【题目详解】解:由二次根式中被开方数大于等于0可知:解得:x≥-1,故答案为:x≥-1.【题目点拨】本题考查了二次根式有意义的条件及一元一次不等式的解法,属于基础题,熟练掌握不等式解法是解决本题的关键.三、解答题(共78分)19、见解析【分析】根据三角形内角和相等得到∠1=∠B,再由∠1=∠2得出∠2=∠B,推出∠2+∠BDG=90°,即∠CDB=90°,从而得出∠ADC=90°.【题目详解】解:如图,∵EF⊥AB,DG⊥BC,∴∠AEF=∠DGB=90°,∵∠ACB=90°,∠A=∠A,∴∠1=∠B,又∵∠1=∠2,∴∠B=∠2,∵∠B+∠BDG=90°,∴∠2+∠BDG=90°,∴∠CDB=90°,∴∠ADC=90°.【题目点拨】本题考查了三角形内角和定理,余角的性质,解题的关键是找到∠B,通过∠1、∠2与∠B的关系推出结论.20、证明见解析【解题分析】先根据角的和差求出,再根据三角形全等的判定定理与性质即可得证.【题目详解】,即在与中,.【题目点拨】本题考查了三角形全等的判定定理与性质,熟记判定定理与性质是解题关键.21、(1)B(﹣4,﹣5)、D(﹣1,﹣2);(2)C1的坐标为:(﹣3,3).【解题分析】(1)根据已知点坐标进而得出坐标轴的位置,进而得出答案;(2)利用关于x轴对称点的性质得出对应点坐标进而得出答案.【题目详解】(1)如图所示:点B(﹣4,﹣5)、D(﹣1,﹣2);(2)如图所示:四边形A1B1C1D1,即为所求,点C的对应点C1的坐标为:(﹣3,3).【题目点拨】此题主要考查了轴对称变换,正确得出对应点位置是解题关键.22、(1)m=2,n=1;(2)12;(3)x>2.【解题分析】试题分析:(1)先把A(m,4)代入正比例函数解析式可计算出m=2,然后把A(2,4)代入y=-x+n计算出n的值;(2)先确定B点坐标,然后根据三角形面积公式计算;(3)观察函数图象得到当x>2时,直线y=-x+n都在y=2x的下方,即函数y=-x+n的值小于函数y=2x的值.试题解析:(1)正比例函数的图象过点A(m,4).∴4=2m,∴m=2.又∵一次函数的图象过点A(m,4).∴4=-2+n,∴n=1.(2)一次函数的图象与x轴交于点B,∴令y=0,∴x=1点B坐标为(1,0).∴△AOB的面积.(3)∵由图象得当x>2时,直线y=-x+n都在y=2x的下方∴当x>2时,函数y=-x+n的值小于函数y=2x的值.【题目点拨】本题考查一次函数,涉及待定系数法,三角形面积公式,解方程等知识,本题属于中等题型.23、(1)图见解析;的坐标为、的坐标为、的坐标为;(2);(3)见解析.【分析】(1)根据网格结构找出点A、B、C关于y轴的对称的点A1、B1、C1的位置,然后顺次连接即可;(2)依据割补法即可得到△ABC的面积.(3)找出点B关于y轴的对称点B′,连接B′A与x轴相交于一点,根据轴对称确定最短路线问题,交点即为所求的点P的位置.【题目详解】解:(1)△A1B1C1如图所示,,,;(2)(3)如图所示,作点B关于y轴的对称点B',连接B'A,交y轴于点P,则PA+PB最小.【题目点拨】本题考查了根据轴对称变换、三角形的面积以及轴对称确定最短路线问题,熟练掌握网格结构准确找出对应点的位置是解题的关键.24、(1)点,点;(2);(3)点,点.【分析】(1)根据待定系数法,可得直线的解析式是:,进而求出,过点作轴于点,易证,从而求出点D的坐标;(2)过点作轴于点,证得:,进而得,根据待定系数法,即可得到答案;(3)分两种情况:点与点重合时,点与点关于点中心对称时,分别求出点P的坐标,即可.【题目详解】(1)经过点,,直线的解析式是:,当时,,解得:,点,过点作轴于点,在正方形中,,,,,,,在和中,∵,∴,,点;(2)过点作轴于点,同上可证得:,∴CM=OB=3,BM=OA=4,OB=3+4=7,∴,设直线得解析式为:(为常数),代入点得:,解得:,∴直线的解析式是:;(3)存在,理由如下:点与点重合时,点;点与点关于点中心对称时,过点P作PN⊥x轴,则点C是BP的中点,CMPN,∴CM是的中位线,∴PN=2CM=6,BN=2BM=8,∴ON=3+8=11,∴点综上所述:在直线上存在点,使为等腰三角形,坐标为:,.【题目点拨】本题主要考查一次函数与几何图形的综合,添加辅助线,构造全等三角形,是解题的关键,体现了数形结合思想.25、(1)CD=4,AD=16;(2)当t=3.6或10秒时,是直角三角形,理由见解析;(3)当t=7.2秒时,,理由见解析【分析】(1)根据CD=速度×时间列式计算即可得解,利用勾股定理列式求出AC,再根据AD=AC-CD代入数据进行计算即可得解;

(2)分①∠CDB=90°时,利用△ABC的面积列式计算即可求出BD,然后利用勾股定理列式求解得到CD,再根据时间=路程÷速度计算;②∠CBD=90°时,点D和点A重合,然后根据时间=路程÷速度计算即可得解;

(3)过点B作BF⊥AC于F,根据等腰三角形三线合一的性质可得CD=2CF,再由(2)的结论解答.【题目详解】解:(1)t=2时,CD=2×2=4,

∵∠ABC=90°,AB=16,BC=12,∴AD=AC-C

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论