版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省曹县2024届数学八上期末经典试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.将下列多项式因式分解,结果中不含有因式(x﹣2)的是()A.x2﹣4 B.x3﹣4x2﹣12xC.x2﹣2x D.(x﹣3)2+2(x﹣3)+12.将一次函数y=﹣2x+3的图象沿y轴向上平移2个单位长度,则平移后的图象所对应的函数表达式为()A.y=﹣2x+1 B.y=﹣2x﹣5 C.y=﹣2x+5 D.y=﹣2x+73.下列运算错误的是()A. B. C. D.4.某人到瓷砖商店去购买一种多边形形状的瓷砖,用来铺设无缝地板,他购买的瓷砖形状不可以是()A.正三角形 B.矩形 C.正八边形 D.正六边形5.如图,为等边三角形,为延长线上一点,CE=BD,平分,下列结论:(1);(2);(3)是等边三角形,其中正确的个数为()A.0个 B.1个 C.2个 D.3个6.如图,在四边形ABCD中,AB=CD,BA和CD的延长线交于点E,若点P使得S△PAB=S△PCD,则满足此条件的点P()A.有且只有1个B.有且只有2个C.组成∠E的角平分线D.组成∠E的角平分线所在的直线(E点除外)7.在平面直角坐标系中,点坐标为,动点的坐标为,则的最小值是()A. B. C. D.8.意大利文艺复兴时期的著名画家达•芬奇利用两张一样的纸片拼出不一样的“空洞”,从而巧妙的证明了勾股定理.小明用两张全等的的纸片①和②拼成如图1所示的图形,中间的六边形由两个正方形和两个全等的直角三角形组成.已知六边形的面积为28,.小明将纸片②翻转后拼成如图2所示的图形,其中,则四边形的面积为()A.16 B.20 C.22 D.249.如图,在中,,,,,则的长为()A.1 B.2 C.3 D.410.点关于轴的对称点的坐标是A. B. C. D.二、填空题(每小题3分,共24分)11.如图,在中,,,,以点为圆心,长为半径作弧,交于点,再分别以点和点为圆心,大于的长为半径作弧,两弧相交于点,作射线交于点,则的长为______.12.如图所示,已知∠1=22°,∠2=28°,∠A=56°,则∠BOC的度数是___________.13.若是正整数,则满足条件的的最小正整数值为__________.14.如图,AH⊥BC交BC于H,那么以AH为高的三角形有_____个.15.如果实数x满足,那么代数式的值为.16.如图,AB=AD,要证明△ABC与△ADC全等,只需增加的一个条件是______________
17.已知关于x的方程无解,则__________.18.如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若△CEF的周长为18,则OF的长为_____________________.三、解答题(共66分)19.(10分)计算下列各式:(x﹣1)(x+1)=;(x﹣1)(x2+x+1)=;(x﹣1)(x3+x2+x+1)=;…(1)根据以上规律,直接写出下式的结果:(x﹣1)(x6+x5+x4+x3+x2+x+1)=;(2)你能否由此归纳出一般性的结论(x﹣1)(xn﹣1+xn﹣2+xn﹣3+…+x+1)=(其中n为正整数);(3)根据(2)的结论写出1+2+22+23+24+…+235的结果.20.(6分)我们规定,三角形任意两边的“广益值”等于第三边上的中线和这边一半的平方差.如图1,在中,是边上的中线,与的“广益值”就等于的值,可记为(1)在中,若,,求的值.(2)如图2,在中,,,求,的值.(3)如图3,在中,是边上的中线,,,,求和的长.21.(6分)先化简,再求值:,其中22.(8分)如图,点在线段上,,,,是的中点.(1)求证:;(2)若,,求的度数.23.(8分)(1)解方程:(2)计算:3a(2a2-9a+3)-4a(2a-1)(3)计算:()×()+|-1|+(5-2π)0(4)先化简,再求值:(xy2+x2y),其中x=,y=.24.(8分)如图,Rt△ABC中,∠ACB=90°,AC=BC,点D在斜边AB上,且AD=AC,过点B作BE⊥CD交直线CD于点E.(1)求∠BCD的度数;(2)求证:CD=2BE.25.(10分)如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D在边AB上,点E在边AC的左侧,连接AE.(1)求证:AE=BD;(2)试探究线段AD、BD与CD之间的数量关系;(3)过点C作CF⊥DE交AB于点F,若BD:AF=1:2,CD=,求线段AB的长.26.(10分)先化简,再求值:(1),其中x=﹣(2),其中x=﹣1.
参考答案一、选择题(每小题3分,共30分)1、B【题目详解】试题解析:A.x2-4=(x+2)(x-2),含有因式(x-2),不符合题意;B.x3-4x2-12x=x(x+2)(x-6),不含有因式(x-2),正确;C.x2-2x=x(x-2),含有因式(x-2),不符合题意;D.(x-3)2+2(x-3)+1=x2-4x+4=(x-2)2,含有因式(x-2),不符合题意,故选B.2、C【分析】直接利用一次函数平移规律“上加下减”即可得到答案.【题目详解】∵将一次函数y=﹣2x+3的图象沿y轴向上平移2个单位长度,∴平移后所得图象对应的函数关系式为:y=﹣2x+3+2,即y=﹣2x+1.故选:C.【题目点拨】本题主要一次函数平移规律,掌握一次函数平移规律“左加右减,上加下减”是解题的关键.3、C【分析】根据负整数指数幂,逐个计算,即可解答.【题目详解】A.,正确,故本选项不符合题意;B.,正确,故本选项不符合题意;C.,错误,故本选项符合题意;D.,正确,故本选项不符合题意;故选:C.【题目点拨】本题主要考查了负整数指数幂的运算.负整数指数为正整数指数的倒数.4、C【解题分析】因为正八边形的每个内角为,不能整除360度,故选C.5、D【分析】根据等边三角形的性质得出,,求出,根据可证明即可证明与;根据全等三角形的性质得出,,求出,即可判断出是等边三角形.【题目详解】是等边三角形,,,,平分,,,在和中,,故(2)正确;∴∴,故(1)正确;∴是等边三角形,故(3)正确.∴正确有结论有3个.故选:D.【题目点拨】本题主要考查了全等三角形的判定与性质以及等边三角形的性质,要灵活运用等边三角形的三边相等、三个角相等的性质.6、D【解题分析】试题分析:作∠E的平分线,可得点P到AB和CD的距离相等,因为AB=CD,所以此时点P满足S△PAB=S△PCD.故选D.考点:角平分线的性质.7、A【分析】根据题意知,则AB+OB的最小值可以看作点(m,m)与(2,0)、(0,1)两点距离和的最小值,求出(2,0)、(0,1)两点距离即可.【题目详解】解:由题知点坐标为,动点的坐标为,∴,∴AB+OB的最小值可以看作点(m,m)与(2,0)、(0,1)两点距离和的最小值,则最小值为(2,0)、(0,1)两点距离,∴的最小值是,故选A.【题目点拨】本题是对坐标系中最短距离的考查,熟练掌握勾股定理是解决本题的关键.8、B【分析】根据图形及勾股定理的验证得到BC2=BG2+CG2,故四边形的面积等于四边形的面积加上四边形的面积,再根据六边形的面积为28,即可求解.【题目详解】∵∴可设BG=2a,CG=a,∵六边形的面积为28,∴4a2+a2+=28解得a=2(-2)舍去,根据图形及勾股定理的验证得到BC2=BG2+CG2,∴四边形的面积=四边形的面积加上四边形的面积=4a2+a2=5×4=20故选B.【题目点拨】此题主要考查勾股定理的几何验证,解题的关键是熟知勾股定理的运用.9、B【分析】根据直角三角形的两个锐角互余,即可求出∠BDC,然后根据30°所对的直角边是斜边的一半即可求出BD,再根据三角形外角的性质即可求出∠DBA,从而得出∠BDA=∠A,最后根据等角对等边即可求出的长.【题目详解】解:∵,∴∠BDC=90°-在Rt△BDC中,BD=2BC=2∵,∠BDC为△ADB的外角∴∠DBA=∠BDC-∠A=15°∴∠DBA=∠A∴AD=BD=2故选B.【题目点拨】此题考查的是直角三角形的性质、三角形外角的性质和等腰三角形的性质,掌握直角三角形的两个锐角互余、30°所对的直角边是斜边的一半、三角形外角的性质和等角对等边是解决此题的关键.10、A【分析】再根据关于x轴对称点的坐标特点:纵坐标互为相反数,横坐标不变可得答案.【题目详解】解:∵∴M点关于x轴的对称点的坐标为,故选A.【题目点拨】此题考查关于x轴对称点的坐标特点,关键是掌握点的坐标的变化规律二、填空题(每小题3分,共24分)11、4.1【分析】根据勾股定理计算出AB的长,再由作图可知CE垂直平分BD,然后利用等面积法计算CF即可.【题目详解】连接CD、DE、BE,由题可知,BC=DC,DE=BE,∴CE垂直平分BD,∵在Rt△ABC中,AC=1,BC=6,∴AB=,∵S△ABC=AC•BC=AB•CF,∴×1×6=×10•CF,∴CF=4.1.故答案为:4.1.【题目点拨】本题考查垂直平分线的判定,勾股定理,明确垂直平分线判定定理及勾股定理,掌握等面积法是解题关键.12、106°【分析】利用了三角形中一个外角等于与它不相邻的两个内角和即可求解.【题目详解】如图,连接AO,延长AO交BC于点D.
根据三角形中一个外角等于与它不相邻的两个内角和,可得:
∠BOD=∠1+∠BAO,∠DOC=∠2+∠OAC,
∵∠BAO+∠CAO=∠BAC=56°,∠BOD+∠COD=∠BOC,
∴∠BOC=∠1+∠2+∠BAC=22°+28°+56°=106°.
故答案为:106°.【题目点拨】本题考查了三角形的内角和定理,三角形的外角的性质,关键是利用了三角形中一个外角等于与它不相邻的两个内角和求解.13、1【分析】先化简,然后依据也是正整数可得到问题的答案.【题目详解】解:==,∵是正整数,∴1n为完全平方数,
∴n的最小值是1.故答案为:1.【题目点拨】本题主要考查的是二次根式的定义,熟练掌握二次根式的定义是解题的关键.14、1【解题分析】∵AH⊥BC交BC于H,而图中有一边在直线CB上,且以A为顶点的三角形有1个,∴以AH为高的三角形有1个,故答案为:1.15、5【解题分析】试题分析:∵由得,∴.16、DC=BC(答案不唯一)【分析】要说明△ABC≌△ADC,现有AB=AD,公共边AC=AC,需第三边对应相等,于是答案可得.【题目详解】解:∵AB=AD,AC=AC
∴要使△ABC≌△ADC可利用SSS判定,
故添加DC=BC(答案不唯一).
故答案为:BC=DC,(答案不唯一).【题目点拨】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关健.17、0或1【分析】根据分式方程无解的条件:去分母后所得的整式方程无解或者解这个整式方程的解使原分母为0,分类讨论当a=0时与a≠0时求出答案.【题目详解】解:去分母得:,即:,分情况讨论:①当整式方程无解时,,此时分式方程无解;②当分式方程无解时,即x=2,此时,则,解得:,故当或者时分式方程无解;故答案为:0或1【题目点拨】本题主要考查了分式方程无解的条件:去分母后所得的整式方程无解或者解这个整式方程的解使原分母为0,正确掌握解分式方程的步骤是解题的关键.18、【分析】由直角三角形的中线,求出DE的长度,利用三角形中位线定理和勾股定理,求出BE的长度,即可求出答案.【题目详解】解:∵四边形ABCD是正方形,
∴∠DCE=90°,OD=OB,
∵DF=FE,
∴CF=FE=FD,
∵EC+EF+CF=18,EC=5,
∴EF+FC=13,∴DE=13,
∴DC=,
∴BC=CD=12,
∴BE=BC-EC=7,
∵OD=OB,DF=FE,
∴OF=BE=;故答案为:.【题目点拨】本题考查正方形的性质,三角形的中位线定理,直角三角形斜边中线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题(共66分)19、x2﹣1;x3﹣1;x4﹣1;(1)x7﹣1;(2)xn﹣1;(3)236﹣1.【分析】利用多项式乘以多项式法则计算各式即可;(1)根据上述规律写出结果即可;(2)归纳总结得到一般性规律,写出即可;(3)利用得出的规律计算即可得到结果.【题目详解】(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1,(1)(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1;(2)(x﹣1)(xn﹣1+xn﹣2+xn﹣3+…+x+1)=xn﹣1;(3)1+2+22+23+24+…+235=(2﹣1)(235+234+233+…+2+1)=236﹣1.【题目点拨】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.20、(1)AC=9;(2)ABAC=-72,BABC=216;(3)BC=2OC=2,AB=10.【分析】(1)在Rt中,根据勾股定理和新定义可得AO2-OC2=81=AC2;(2)①先利用含30°的直角三角形的性质求出AO=2,OB=,再用新定义即可得出结论;②先构造直角三角形求出BE,AE,再用勾股定理求出BD,最后用新定义即可得出结论;(3)作BD⊥CD,构造直角三角形BCD,根据三角形面积关系求出BD,根据新定义和勾股定理逆定理得出三角形AOD是直角三角形,根据中线性质得出OA的长度,根据勾股定理求出OC,从而得出BC,再根据勾股定理求出CD,再求出AD,再运用勾股定理求出AB.【题目详解】(1)已知如图:AO为BC上的中线,在Rt中,AO2-OC2=AC2因为所以AO2-OC2=81所以AC2=81所以AC=9.(2)①如图2,取BC的中点D,连接AO,∵AB=AC,∴AO⊥BC,在△ABC中,AB=AC,∠BAC=120°,∴∠ABC=30°,在Rt△AOB中,AB=12,∠ABC=30°,∴AO=6,OB==,∴ABAC=AO2﹣BO2=36﹣108=﹣72,②取AC的中点D,连接BD,∴AD=CD=AC=6,过点B作BE⊥AC交CA的延长线于E,在Rt△ABE中,∠BAE=180°﹣∠BAC=60°,∴∠ABE=30°,∵AB=12,∴AE=6,BE=,∴DE=AD+AE=12,在Rt△BED中,根据勾股定理得,BD=∴BABC=BD2﹣CD2=216;(3)作BD⊥CD,因为,,所以BD=2,因为,是边上的中线,所以AO2-OC2=-64,所以OC2-AO2=64,由因为AC2=82=64,所以OC2-AO2=AC2所以∠OAC=90°所以OA=所以OC=所以BC=2OC=2,在Rt△BCD中,CD=所以AD=CD-AC=16-8=8所以AB=【题目点拨】考核知识点:勾股定理逆定理,含30°直角三角形性质.借助辅助线构造直角三角形,运用勾股定理等直角三角形性质解决问题是关键.21、-2【解题分析】试题分析:先化简,再将x的值代入计算即可.试题解析:原式==+1=当x=时,原式==-222、(1)证明见解析;(2)【分析】(1)由“SAS”可证△ADC≌△BCE,可得CD=CE,由等腰三角形的性质可得结论;
(2)由全等三角形的性质和等腰三角形的性质可求解.【题目详解】(1)在和中,,∴,∴,又∵是的中点,∴;(2)由(1)可知,,∴,,又∵,∴,∵∴.【题目点拨】本题考查了全等三角形的判定和性质,等腰三角形的性质,证明△ADC≌△BCE是本题的关键.23、(1)分式方程无解;(2);(3)4;(4)【分析】(1)去分母化为整式方程求解即可,求出未知数的值要验根;(2)先算单项式与多项式的乘法,再合并同类项即可;(3)第一项按二次根式的乘法计算,第二项按化简绝对值的意义化简,第三项按零指数幂的意义化简,然后进一步合并化简即可;(4)先根据分式的运算法则把所给代数式化简,再把x=,y=代入计算.【题目详解】(1)去分母得:2x-2+3x+3=6,解得:x=1,经检验x=1是增根,分式方程无解;(2)原式;(3)原式=(4)原式=xy(x+y)=x﹣y,代入得当x=,y=时,原式=【题目点拨】本题考查了解分式方程,实数的混合运算,整式的混合运算,分式的化简求值,熟练掌握各知识点是解答本题的关键.24、(1)22.5°;(2)见解析【分析】(1)首先根据等腰直角三角形求出的度数,然后利用等腰三角形的性质和三角形内角和求出的度数,最后余角的概念求值即可;(2)作AF⊥CD交CD于点F,首先根据等腰三角形三线合一得出CF=FD=CD,∠FAD=∠CAB=22.5°,进一步可证明△AFD≌△CEB,则有BE=DF,则结论可证.【题目详解】(1)∵∠ACB=90°,AC=BC,∴∠A=∠B=45°,∵AD=AC,∴∠ACD=∠ADC==67.5°,∴∠BCD=90°-67.5°=22.5°;(2)证明:作AF⊥CD交CD于点F,∵AD=AC,∴CF=FD=CD,∠FAD=∠CAB=22.5°,∵∠ADC=67.5°,∴∠BDE=67.5°,∴∠DBE=90°-67.5°=22.5°,∴∠CBE=45°+22.5°=67.5°,在△AFD和△CEB中,∴△AFD≌△CEB,∴BE=DF,∴CD=2BE.【题目点拨】本题主要考查等腰三角形的性质,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 西北大学《光学》2022-2023学年第一学期期末试卷
- 第3课时 观察身边微小的物体-JK版《科学》六年级上册课件
- 《光源与光检测器》课件
- 智研咨询-2025年中国共享住宿行业市场全景调查、投资策略研究报告
- 四年级上册数学总复习课件
- 《财富作文评讲》课件
- 购买牙椅合同
- 《时不等式组》课件
- 供电施工合同撰写起诉状时需要注意的点
- 《清华土力学》课件
- 校园一日安全巡查记录表【范本模板】
- 结婚聘书模板范文(通用17篇)
- 2023届高考英语一轮复习题型总动员之七选五:科技类(有答案详解10篇)
- 人物《袁隆平》PPT介绍
- GB/T 18710-2002风电场风能资源评估方法
- GB/T 10489-2009轻型燃气轮机通用技术要求
- 汽车车身构造与附件拆装汽车美容与装潢试卷试题
- 七年级英语上册测试题可直接打印
- 2022年政府采购评审专家考试题库含答案
- 简明犹太史课件
- 建筑室内防水工程教学课件
评论
0/150
提交评论