版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省郑州市实验中学2024届数学八上期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,中,,的垂直平分线交于,交于,平分,则的度数为()A.30° B.32° C.34° D.36°2.如果将分式y2x+y(x,y均为正数)中字母的x,y的值分别扩大为原来的3倍,那么分式yA.不改变 B.扩大为原来的9倍 C.缩小为原来的13 D.扩大为原来的33.直线y=-2x+m与直线y=2x-1的交点在第四象限,则m的取值范围是()A.m>-1 B.m<1 C.-1<m<1 D.-1≤m≤14.三角形的三边长为,则这个三角形是()A.等边三角形 B.钝角三角形 C.直角三角形 D.锐角三角形5.如图,在△ABC中,∠ACB=90°,AB的中垂线交AC于D,P是BD的中点,若BC=4,AC=8,则S△PBC为()A.3 B.3.3 C.4 D.4.56.在平面直角坐标系中,点M(2,-1)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.如果把分式中和都扩大10倍,那么分式的值()A.扩大2倍 B.扩大10倍 C.不变 D.缩小10倍8.某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的()A.最高分 B.中位数 C.方差 D.平均数9.某广场准备用边长相等的正方形和正三角形两种地砖铺满地面,在每个顶点的周围,正方形和正三角形地砖的块数分别是()A.1、2 B.2、1 C.2、2 D.2、310.下列四个分式方程中无解的是().A. B.C. D.11.下列命题是真命题的是()A.三角形的一个外角大于任何一个内角B.如果两个角相等,那么它们是内错角C.如果两个直角三角形的面积相等,那么它们的斜边相等D.直角三角形的两锐角互余12.分式有意义的条件是()A.x≠0 B.y≠0 C.x≠3 D.x≠﹣3二、填空题(每题4分,共24分)13.如图,在中,,平分交BC于点,于点.若,则_______________.14.已知:点A(a-3,2b-1)在y轴上,点B(3a+2,b+5)在x轴上,则点C(a,b)向左平移3个单位,再向上平移2个单位后的坐标为________.15.如图在中,是的中线,是上的动点,是边上动点,则的最小值为______________.16.如图,在中,,,的垂直平分线分别交,于点,,则______.17.分解因式:_____.18.若代数式的值为零,则=____.三、解答题(共78分)19.(8分)请阅读下列材料,并完成相应的任务.任务:(1)利用上述方法推导立方和公式(从左往右推导);(2)已知,求的值.20.(8分)课堂上,老师出了一道题:比较与的大小.小明的解法如下:解:,因为,所以,所以,所以,所以,我们把这种比较大小的方法称为作差法.(1)根据上述材料填空(在横线上填“”“=”或“”):若,则;若,则;若,则.(2)利用上述方法比较实数与的大小.21.(8分)如图1,在平面直角坐标系中,直线l1:yx5与x轴,y轴分别交于A.B两点.直线l2:y4xb与l1交于点D(-3,8)且与x轴,y轴分别交于C、E.(1)求出点A坐标,直线l2的解析式;(2)如图2,点P为线段AD上一点(不含端点),连接CP,一动点Q从C出发,沿线段CP以每秒1个单位的速度运动到点P,再沿着线段PD以每秒个单位的速度运动到点D停止,求点Q在整个运动过程中所用最少时间与点P的坐标;(3)如图3,平面直角坐标系中有一点G(m,2),使得SCEGSCEB,求点G的坐标.22.(10分)如图,在平面直角坐标系中,直线AB交x轴于点B(6,0),交y轴于点C(0,6),直线AB与直线OA:y=x相交于点A,动点M在线段OA和射线AC上运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在求出此时点M的坐标;若不存在,说明理由.23.(10分)王华由,,,,,这些算式发现:任意两个奇数的平方差都是8的倍数(1)请你再写出两个(不同于上面算式)具有上述规律的算式;(2)请你用含字母的代数式概括王华发现的这个规律(提示:可以使用多个字母);(3)证明这个规律的正确性.24.(10分)为了了解市民“获取新闻的最主要途径”,某市记者开展了一次抽样调查。根据调查结果绘制了如下尚不完整的统计图.根据以上信息解答下列问题.(1)这次接受调查的市民总人数是_________.(2)扇形统计图中,“电视”所对应的圆心角的度数是_________.(3)请补全条形统计图.(4)若该市约有80万人,请你估计其中将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数.25.(12分)目前节能灯在城市已基本普及,今年某省面向农村地区推广,为响应号召,某商场用3300元购进节能灯100只,这两种节能灯的进价、售价如表:进价元只售价元只甲种节能灯3040乙种节能灯3550求甲、乙两种节能灯各进多少只?全部售完100只节能灯后,该商场获利多少元?26.按要求完成下列各题:(1)计算:(2)分解因式:
参考答案一、选择题(每题4分,共48分)1、D【分析】根据,则∠ABC=∠C,由垂直平分线和角平分线的性质,得到∠ABC=∠C=2∠A,根据三角形内角和定理,即可得到答案.【题目详解】解:∵,∴∠ABC=∠C,∵平分,∴,∵DE垂直平分AB,∴,∴∠ABC=∠C=2∠A,∵∠ABC+∠C+∠A=180°,∴,∴.故选:D.【题目点拨】本题考查了三角形内角和定理和等腰三角形性质、线段垂直平分线性质的应用,以及角平分线的性质.注意:线段垂直平分线上的点到线段两个端点的距离相等.2、A【解题分析】把x与y分别换为3x与3y,化简后判断即可.【题目详解】根据题意得:3y6x+3y则分式的值不改变,故选A.【题目点拨】此题考查了分式的基本性质,熟练掌握分式的基本性质是解本题的关键.3、C【解题分析】试题分析:联立,解得,∵交点在第四象限,∴,解不等式①得,m>﹣1,解不等式②得,m<1,所以,m的取值范围是﹣1<m<1.故选C.考点:两条直线相交或平行问题.4、C【分析】利用完全平方公式把等式变形为a2+b2=c2,根据勾股定理逆定理即可判断三角形为直角三角形,可得答案.【题目详解】∵,∴a2+2ab+b2=c2+2ab,∴a2+b2=c2,∴这个三角形是直角三角形,故选:C.【题目点拨】本题考查了勾股定理的逆定理,如果一个三角形的两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形,最长边所对的角为直角.5、A【分析】根据线段垂直平分线的性质得到DA=DB,根据勾股定理求出BD,得到CD的长,根据三角形的面积公式计算,得到答案.【题目详解】解:∵点D在线段AB的垂直平分线上,∴DA=DB,在Rt△BCD中,BC2+CD2=BD2,即42+(8﹣BD)2=BD2,解得,BD=5,∴CD=8﹣5=3,∴△BCD的面积=×CD×BC=×3×4=6,∵P是BD的中点,∴S△PBC=S△BCD=3,故选:A.【题目点拨】本题考查的是线段垂直平分线的性质、直角三角形的性质、勾股定理,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.6、D【分析】根据点的横坐标2>0,纵坐标﹣1<0,可判断这个点在第四象限.【题目详解】∵点的横坐标2>0为正,纵坐标﹣1<0为负,∴点在第四象限.故选D.【题目点拨】本题考查点在直角坐标系上的象限位置,解题的关键是熟练掌握各象限的横纵坐标符号.7、C【分析】根据题意,将分式换成10x,10y,再化简计算即可.【题目详解】解:若和都扩大10倍,则,故分式的值不变,故答案为:C.【题目点拨】本题考查了分式的基本性质,解题的关键是用10x,10y替换原分式中的x,y计算.8、B【解题分析】试题分析:共有25名学生参加预赛,取前13名,所以小颖需要知道自己的成绩是否进入前13,我们把所有同学的成绩按大小顺序排列,第13名的成绩是这组数据的中位数,所以小颖知道这组数据的中位数,才能知道自己是否进入决赛.故选B.考点:统计量的选择.9、D【分析】由镶嵌的条件知,在一个顶点处各个内角和为360°.【题目详解】正三角形的每个内角是60°,正方形的每个内角是90°,
∵3×60°+2×90°=360°,
∴需要正方形2块,正三角形3块.
故选D.【题目点拨】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.10、D【分析】分别把四个分式方程解出来并检验是否为分式方程的增根,即可得出答案.【题目详解】A中,解得,经检验,是原分式方程的解,故不符合题意;B中,解得,经检验,是原分式方程的解,故不符合题意;C中,解得,经检验,是原分式方程的解,故不符合题意;D中,解得,经检验,是原分式方程的增根,所以原分式方程无解,故符合题意;故选:D.【题目点拨】本题主要考查分式方程,掌握分式方程的解法并检验是否为分式方程的增根是解题的关键.11、D【分析】根据三角形的外角性质,平行线的判定和直角三角形的性质对各选项分析判断后利用排除法求解.【题目详解】A、因为三角形的外角大于任何一个与它不相邻的内角,故本选项错误;B.如果两个角相等,那么它们不一定是内错角,故选项B错误;C.如果两个直角三角形的面积相等,那么它们的斜边不一定相等,故选项C错误;D.直角三角形的两锐角互余.正确.故选:D.【题目点拨】本题考查点较多,熟练掌握概念,定理和性质是解题的关键.12、C【分析】根据分式的分母不为0可得关于x的不等式,解不等式即得答案.【题目详解】解:要使分式有意义,则,解得:x≠1.故选:C.【题目点拨】本题考查了分式有意义的条件,属于应知应会题型,熟知分式的分母不为0是解题的关键.二、填空题(每题4分,共24分)13、56°【分析】根据三角形内角和定理证明∠DBE=∠DAC,再根据角平分线的定义即可解决问题.【题目详解】∵∠C=∠E=90°,∠ADC=∠BDE,∴∠DBE=∠DAC=28°.∵AD平分∠CAB,∴∠CAB=2∠CAD=2×28°=56°.故答案为:56°.【题目点拨】本题考查了三角形内角和定理,角平分线的定义等知识,解答本题的关键是熟练掌握基本知识,属于中考常考题型.14、(0,-3).【分析】根据横轴上的点,纵坐标为零,纵轴上的点,横坐标为零可得a、b的值,然后再根据点的平移方法可得C平移后的坐标.【题目详解】∵A(a-3,2b-1)在y轴上,∴a-3=0,解得:a=3,∵B(3a+2,b+5)在x轴上,∴b+5=0,解得:b=-5,∴C点坐标为(3,-5),∵C向左平移3个单位长度再向上平移2个单位长度,∴所的对应点坐标为(3-3,-5+2),即(0,-3),故答案为:(0,-3).【题目点拨】此题主要考查了坐标与图形的变化--平移,以及坐标轴上点的坐标特点,关键是掌握点的坐标的变化规律:横坐标,右移加,左移减;纵坐标,上移加,下移减.15、【分析】作E关于AD的对称点M,连接CM交AD于F,连接EF,过C作CN⊥AB于N,根据等腰三角形“三线合一”得出BD的长和AD⊥BC,再利用勾股定理求出AD,利用“等面积法”结合垂线段最短进一步求出最小值即可.【题目详解】如图,作E关于AD的对称点M,连接CM交AD于F,连接EF,过C作CN⊥AB于N,∵AB=AC=13,BC=10,AD是△ABC的中线,∴BD=DC=5,AD⊥BC,AD平分∠BAC,∴M在AB上,在Rt△ABD中,由勾股定理可得:AD=,∴,∴,∵E关于AD的对称点M,∴EF=FM,∴CF+EF=CF+FM=CM,根据垂线段最短可得:CM≥CN,即:CF+EF≥,∴CF+EF的最小值为:,故答案为:.【题目点拨】本题主要考查了几何图形中最短路线问题,关键是熟练运用轴对称性质找出相应的线段进行求解.16、40°【分析】根据等腰三角形的性质得出∠B=∠C=40°,再根据垂直平分线的性质解答即可.【题目详解】解:∵在中,,∴,又∵的垂直平分线分别交,于点,,∴AE=BE,∴∠BAE=∠B=40°,故答案为:40°.【题目点拨】本题考查了等腰三角形的性质及垂直平分线的性质,灵活运用上述性质进行推导是解题的关键.17、【解题分析】分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式2后继续应用完全平方公式分解即可:.18、-2【分析】代数式的值为零,则分子为0,且代数有意义,求出x的值即可.【题目详解】代数式的值为零,则分子为0,及,解得,代数式有意义,则,解得:,则x=-2,故答案为-2.【题目点拨】本题是对代数式综合的考查,熟练掌握一元二次方程解法及二次根式知识是解决本题的关键.三、解答题(共78分)19、(1)推导见解析;(2),.【分析】(1)应用添项办法进行因式分解可得:;(2)根据配方法和立方差公式可得.【题目详解】解:解:【题目点拨】考核知识点:因式分解应用.灵活运用因式分解方法转化问题是关键.20、(1);=;;(2).【解题分析】(1)根据不等式和方程移项可得结论;(2)同理,利用作差法可比较大小.【题目详解】(1)(1)①若a-b>0,则a>b;②若a-b=0,则a=b;③若a-b<0,则a<b;(2).因为,所以,即.【题目点拨】本题考查了实数大小的比较,根据所给的材料,运用类比的方法解决问题.21、(1)A(5,0),y4x-4;(2)8秒,P(-1,6);(3).【分析】(1)根据l1解析式,y=0即可求出点A坐标,将D点代入l2解析式并解方程,即可求出l2解析式(2)根据OA=OB可知ABO和DPQ都为等腰直角三角形,根据路程和速度,可得点Q在整个运动过程中所用的时间为,当C,P,Q三点共线时,t有最小值,根据矩形的判定和性质可以求出P和Q的坐标以及最小时间.(3)用面积法,用含m的表达式求出,根据SCEGSCEB可以求出G点坐标.【题目详解】(1)直线l1:yx5,令y=0,则x=5,故A(5,0).将点D(-3,8)代入l2:y4xb,解得b=-4,则直线l2的解析式为y4x-4.∴点A坐标为A(5,0),直线l2的解析式为y4x-4.(2)如图所示,过P点做y轴平行线PQ,做D点做x轴平行线DQ,PQ与DQ相交于点Q,可知DPQ为等腰直角三角形,.依题意有当C,P,Q三点共线时,t有最小值,此时故点Q在整个运功过程中所用的最少时间是8秒,此时点P的坐标为(-1,6).(3)如图过G做x轴平行线,交直线CD于点H,过C点做CJ⊥HG.根据l2的解析式,可得点H(),E(0,-4),C(-1,0)根据l1的解析式,可得点A(5,0),B(0,5)则GH=又SCEGSCEB所以,解得故【题目点拨】本题考察一次函数的综合题、待定系数法、平行线的性质、等高模型、垂线段最短等性质,解题的关键是灵活运用所学的知识解决问题,学会用转化的思想思考问题,属于压轴题.22、(1)y=﹣x+6;(2)12;(3)存在满足条件的点M,其坐标为(1,)或(1,5)或(﹣1,7)【分析】(1)由B、C坐标,根据待定系数法可求得直线AB的解析式;(2)联立直线AB和直线OA解析式可求得A点坐标,则可求得△OAC的面积;(3)当△OMC的面积是△OAC的面积的时,根据面积公式即可求得M的横坐标,然后代入解析式即可求得M的坐标.【题目详解】解:(1)设直线AB的解析式是y=kx+b,根据题意得,解得,∴直线AB的解析式为y=﹣x+6;(2)联立直线OA和直线AB的解析式可得,解得,∴A(4,2),∴S△OAC=×6×4=12;(3)由题意可知S△OMC=S△OAC=×12=3,设M点的横坐标为t,则有S△OMC=×OC•|t|=3|t|,∴3|t|=3,解得t=1或t=﹣1,当点t=﹣1时,可知点M在线段AC的延长线上,∴y=﹣(﹣1)+6=7,此时M点坐标为(﹣1,7);当点t=1时,可知点M在线段OA或线段AC上,在y=x中,x=1可得y=,代入y=﹣x+6可得y=5,∴M的坐标是(1,);在y=﹣x+6中,x=1则y=5,∴M的坐标是(1,5);综上可知存在满足条件的点M,其坐标为(1,)或(1,5)或(﹣1,7).【题目点拨】本题考查待定系数法求一次函数解析式、解二元一次方程组和三角形面积,解题的关键是掌握待定系数法求一次函数解析式、解二元一次方程组和三角形面积.23、(1),;(2);(3)见解析.【分析】(1)根据已知算式写出符合题意的答案;(2)利用平方差公式计算,即可得出答案;(3)先把代数式进行分解因式,然后对m、n的值进行讨论分析,即可得到结论成立.【题目详解】解:(1)根据题意,有:,;∴,;(2)根据题意,得:(m,n,a都是整数且互不相同);(3)证明:==;当m、n同是奇数或偶数时,(m-n)一定是偶数,∴4(m-n)一定是8的倍数;当m、n是一奇一偶时,(m+n+1)一定是偶数,∴4(m+n+1)一定是8的倍数;综上所述,任意两个奇数的平方差都是8的倍数.【题目点拨】本题考查了因式分解的应用及平方差公式的应用,解题的关键是熟练掌握因式分解的方法进行解题.注意:平方差公式是a2-b2=(a+b)(a-b).24、(1)1000;(2)54°;(3)补全条形统计图见解析;(4)528000
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度高端餐饮服务采购合同
- 2024年企业孵化器专业孵化器入驻企业孵化合同3篇
- 2024年学校食堂餐余垃圾回收合同3篇
- 2024至2030年中国平开上悬塑钢门窗行业投资前景及策略咨询研究报告
- 2024年定制销售代理佣金协议格式版B版
- 2024至2030年中国安全阀动态研磨机行业投资前景及策略咨询研究报告
- 2024年度黄豆产品研发:黄豆购销合同协议
- 2024年度碳排放权交易合同的碳排放量监测与交易规则3篇
- 2024年新规定:婚姻解除注意事项3篇
- 2024年度离婚债务处理协议书2篇
- 采购管理的团队建设与合作
- 骨科手术机器人课件
- 机械职业环境分析报告
- 《内部控制》ppt课件完整版
- 中国历史人物故事10篇
- 怎样给女儿讲保险知识讲座
- 《音乐治疗》课件
- 2024年华润燃气集团招聘笔试参考题库含答案解析
- 区域综合管养服务投标方案(技术标)
- 英语词汇学教程课后答案(张维友编著-华中师范大学出版社)
- 幼儿园家访培训课件
评论
0/150
提交评论