版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题一次函数章末重难点题型【考点1函数的概念】【例1】(鼓楼区校级期中)下列的曲线中,表示y是x的函数的共有()个.A.1 B.2 C.3 D.4【变式1-1】(新乐市期中)下列变量之间的关系不是函数关系的是()A.一天的气温和时间 B.y2=x中的y与x的关系 C.在银行中利息与时间 D.正方形的周长与面积【变式1-2】(苍溪县期中)下列关系式中,y不是x的函数的是()A.y= B.y=2x2 C.y=(x≥0) D.|y|=x(x≥0)【变式1-3】(如皋市期中)下列各图中能说明y是x的函数的是()A.B. C.D.【考点2函数自变量的取值范围】【例2】(资中县期中)函数y=中自变量x的取值范围是()A.x≠2 B.x≥0 C.x>0且x≠2 D.x≥0且x≠2【变式2-1】(乳山市期中)在函数y=中,自变量x的取值范围是()A.x≥2 B.x≥2且x≠2 C.x>﹣2 D.x>﹣2且x≠2【变式2-2】(巴彦淖尔模拟)在关于x的函数y=+(x﹣1)0中,自变量x的取值范围是()A.x≥﹣2 B.x≥﹣2且x≠0 C.x≥﹣2且x≠1 D.x≥1【变式2-3】(沙坪坝区校级月考)函数y=的自变量x的取值范围是()A.x≥2 B.x≠3且x≠﹣3 C.x≥2且x≠3 D.x≥2且x≠﹣3【考点3一次函数的概念】【方法点拨】一般地,形如y=kx+b(k,b是常数,k≠0)的函数叫做一次函数。当b=0时,y=kx+b即y=kx,是正比例函数。所以说正比例函数是一种特殊的一次函数。【例3】(锦江区校级期末)若y=(m﹣1)x2﹣|m|+3是关于x的一次函数,则m的值为()A.1 B.﹣1 C.±1 D.±2【变式3-1】(沧州期末)①y=kx;②y=x;③y=x2﹣(x﹣1)x;(④y=x2+1:⑤y=22﹣x,一定是一次函数的个数有()A.2个 B.3个 C.4个 D.5个【变式3-2】(芙蓉区校级模拟)若函数y=(k+1)x+k2﹣1是正比例函数,则k的值为()A.0 B.1 C.±1 D.﹣1【变式3-3】(定陶区期末)已知y=(k﹣3)x|k|﹣2+2是一次函数,那么k的值为()A.±3 B.3 C.﹣3 D.无法确定【考点4一次函数图象的判定】【方法点拨】一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.【例4】(孝义市期末)同一平面直角坐标系中,一次函数y=mx+n与y=nx+m(mn为常数)的图象可能是()A.B. C.D.【变式4-1】(西湖区期末)若实数a,b,c满足a+b+c=0,且a<b<c,则函数y=﹣cx﹣a的图象可能是()A.B. C.D.【变式4-2】(温江区期末)如果ab>0,bc<0,则一次函数y=﹣x+的图象的大致形状是()A.B. C.D.【变式4-3】(沙坪坝区校级月考)两条直线y1=ax﹣b与y2=bx﹣a在同一坐标系中的图象可能是图中的()A.B. C.D.【考点5一次函数动点问题】【例5】(昌平区期中)如图①,在矩形MMPQ中,动点R从点N出发,沿着N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图②所示,那么下列说法不正确的是()A.当x=2时,y=5 B.矩形MNPQ的周长是18 C.当x=6时,y=10 D.当y=8时,x=10【变式5-1】建宁县期中)如图,正方形ABCD的边长为4,P为正方形边上一动点,它沿A→D→C→B→A的路径匀速移动,设P点经过的路径长为x,△APD的面积是y,则下列图象能大致反映变量y与变量x的关系图象的是()A. B. C. D.【变式5-2】(锦江区期末)如图,在四边形ABCD中,AD∥BC,∠A为直角,动点P从点A开始沿A→B→C→D的路径匀速前进到D,在这个过程中,△APD的面积S随时间的变化址程可以用图象近似地表示为()A BC D.【变式5-3】(镇平县期末)如图①,四边形ABCD中,BC∥AD,∠A=90°,点P从A点出发,沿折线AB→BC→CD运动,到点D时停止,已知△PAD的面积s与点P运动的路程x的函数图象如图②所示,则点P从开始到停止运动的总路程为()A.6 B.9 C.10 D.11【考点6求一次函数解析式】【方法点拨】先设出函数解析式,再根据条件确定解析式中未知的系数,从而得出函数解析式的方法,叫做待定系数法。函数解析式函数解析式y=kx+b满足条件的两定点(x1,y1)与(x2,y2)一次函数的图象直线l【例6】(上蔡县期末)已知一次函数y=kx+b(k≠0)的图象过点(2,0),且与两坐标轴围成的三角形的面积为1,则这个一次函数的解析式是.【变式6-1】(上饶县期末)一次函数y=kx+b(k、b是常数)当自变量x的取值为1≤x≤5时,对应的函数值的范围为﹣2≤y≤2,则此一次函数的解析式为.【变式6-2】(崂山区期末)已知一次函数y=kx+b的图象经过点A(1,3)且和y=2x﹣3平行,则函数解析式为.【变式6-3】(保定期末)已知y+2和x成正比例,当x=2时,y=4,则y与x之间的函数关系式是.【考点7一次函数与二元一次方程】【方法点拨】方程(组)的解与相应函数的交点坐标是相对应的。找到函数的交点坐标,也就找到了对应方程(组)的解,反之一样。对于不等式(组)的解集也可以通过其对应的函数图象来解决。【例7】(会宁县模拟)如图,一次函数y=ax+b和y=kx+c交于点P(2,4),则关于x的一元一次方程ax+b=kx+c的解是.【变式7-1】(胶州市期中)如图,正比例函数y=x与一次函数y=kx+3(k≠0)的图象交于点A(a,1),则关于x的不等式(k﹣)x+3>0的解集为【变式7-2】(顺义区校级期中)直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2.则关于x的不等式﹣x+m>nx+4n>0的解集为.【变式7-3】(江汉区期末)如图,已知直线y=mx+n交x轴于(3,0),直线y=ax+b交x轴于点(﹣2,0),且两直线交于点A(﹣1,2),则不等式0<mx+n<ax+b的解集为【考点8一次函数的性质】【例8】(青龙县期末)已知:一次函数y=(2a+4)x+(3﹣b),根据给定条件,确定a、b的值.(1)y随x的增大而增大;(2)图象经过第二、三、四象限;(3)图象与y轴的交点在x轴上方.【变式8-1】(镇原县期末)已知函数y=(2m+1)x+m﹣3;(1)若函数图象经过原点,求m的值;(2)若函数图象在y轴的截距为﹣2,求m的值;(3)若函数的图象平行直线y=3x﹣3,求m的值;(4)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.【变式8-2】(天心区校级期末)已知一次函数y=(m+2)x+(3﹣n),求:(1)m,n是什么数时,y随x的增大而减小?(2)m,n为何值时,函数的图象经过原点?(3)若函数图象经过二、三、四象限,求m,n的取值范围.【变式8-3】(当涂县校级期中)已知一次函数y=(2m+3)x+m﹣1,(1)若函数图象经过原点,求m的值;(2)若函数图象在y轴上的截距为﹣3,求m的值;(3)若函数图象平行于直线y=x+1,求m的值;(4)若该函数的值y随自变量x的增大而减小,求m的取值范围;(5)该函数图象不经过第二象限,求m的取值范围.【考点9一次函数的应用—方案最优化问题】【例9】(道里区校级期中)为促进青少年体育运动的发展,某教育集团需要购买一批篮球和足球,已知一个篮球比一个足球的单价高30元,买两个篮球和三个足球一共需要510元.(1)求篮球和足球的单价;(2)根据实际需要,集团决定购买篮球和足球共100个,其中篮球购买的数量不少于40个,若购买篮球x个,学校购买这批篮球和足球的总费用为y(元),求y与x之间的函数关系式;(3)在(2)的条件下,由于集团可用于购买这批篮球和足球的资金最多为10500元,求购买篮球和足球各多少个时,能使总费用y最小,并求出y的最小值.【变式9-1】(普宁市期中)学校需要购买一批篮球和足球,已知一个篮球比一个足球的单价高30元,买两个篮球和三个足球一共需要510元.(1)求篮球和足球的单价分别为多少元?(2)根据实际需要,学校决定购买篮球和足球共100个,其中篮球购买的数量不少于足球数量的,学校可用于购买这批篮球和足球的资金最多为10500元.请问有几种购买方案?(3)若学校购买这批篮球和足球的总费用为W(元),在(2)的条件下,求哪种方案能使总费用W最小,并求出W的最小值.【变式9-2】(孟津县期中)某商场筹集资金12.8万元,一次性购进空调,彩电共30台,根据市场需要,这些空调,彩电可以全部销售,全部销售后利润不低于1.5万元,其中空调、彩电的进价和售价如下表所示:项目空调彩电进价(月/台)54003500售价(月/台)61003900设商场计划购进空调x台,空调和彩电全部销售后商场获得的利润为y元.(1)试出y与x之间的函数关系式;(2)商场有哪几种进货方案可以选择?(3)根据你所学的有关函数知识选择哪种方案获利最大,最大利润为多少?【变式9-3】(天心区校级期中)湖南洞庭湖区盛产稻谷和棉花,销往全国各地,湖边某货运码头,有稻谷和棉花共3000吨,其中稻谷比棉花多500吨.(1)求稻谷和棉花各是多少吨;(2)现有甲、乙两种不同型号的集装箱共58个,将这批稻谷和棉花运往外地,已知稻谷35吨和棉花15吨可装满一个甲型集装箱;稻谷25吨和棉花35吨可装满一个乙型集装箱.在58个集装箱全部使用的情况下,共有几种方案安排使用甲、乙两种集装箱?(3)在(2)的情况下,甲种集装箱每箱收费1000元,乙种集装箱每箱收费1200元,乙种集装箱老板想扩大市场,提出惠民措施:每箱可优惠m元(m<250).问怎么安排集装箱这批货物总运输费最少?【考点10一次函数的应用—行程问题】【例10】(长春期中)甲车从A地出发匀速驶向B地,到达B地后,立即按原路原速返回A地;乙车从B地出发沿相同路线匀速驶向A地,出发1小时后,乙车因故障在途中停车1小时,然后继续按原速驶向A地,乙车在行驶过程中的速度是80千米/时,甲车比乙车早1小时到达A地,两车距各自出发地的路程y千米与甲车行驶时间x小时之间的函数关系如图所示,请结合图象信息解答下列问题:(1)写出甲车行驶的速度,并直接写出图中括号内正确的数.(2)求甲车从B地返回A地的过程中,y与x的函数关系式(不需要写出自变量x的取值范围).(3)直接写出乙车出发多少小时,两车恰好相距80千米.【变式10-1】(成都期中)一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1千米,出租车离甲地的距离为y2千米,两车行驶的时间为x小时,y1、y2关于x的图象如图所示:(1)根据图象,分别写出y1、y2关于x的关系式(需要写出自变量取值范围);(2)当两车相遇时,求x的值;(3)甲、乙两地间有A、B两个加油站,相距200千米,若客车进入A加油站时,出租车恰好进入B加油站,求A加油站离甲地的距离.【变式10-2】(南关区期中)快车和慢车分别从甲、乙两地同时出发,匀速相向而行,快车到达乙地后,慢车继续前行,设出发x小时后,两车相距y千米,图中折线表示从两车出发至慢车到达甲地的过程中y与x之间的函数关系式,根据图中信息,解答下列问题.(1)甲、乙两地相距千米,快车从甲地到乙地所用的时间是小时;(2)求线段PQ的函数解析式(写出自变量取值范围),并说明点Q的实际意义.(3)求快车和慢车的速度.【变式10-3】(宝安区期中)甲、乙两车同时从A地出发驶向B地.甲车到达B地后立即返回,设甲车离A地的距离为y1(千米),乙车离A地的距离为y2(千米),行驶时间为x(小时),y1,y2与x的函数关系如图所示.(1)填空:A、B两地相距千米,甲车从B地返回A地的行驶速度是千米/时;(2)当两车行驶7小时后在途中相遇,求点E的坐标;(3)甲车从B地返回A地途中,与乙车相距100千米时,求甲车行驶的时间.【考点11二元一次方程组与一次函数】【例11】(卢龙县期末)如图,直线y1=2x﹣2的图象与y轴交于点A,直线y2=﹣2x+6的图象与y轴交于点B,两者相交于点C.(1)方程组的解是;(2)当y1>0与y2>0同时成立时,x的取值范围为;(3)求△ABC的面积;(4)在直线y1=2x﹣2的图象上存在异于点C的另一点P,使得△ABC与△ABP的面积相等,请求出点P的坐标.【变式11-1】(乐亭县期末)如图,直线l1:y=kx+b与直线l2:y=﹣x+4交于点C(m,2),直线l1经过点(4,6).(1)求直线l1的函数表达式;(2)直接写出方程组的解;(3)若点P(3,n)在直线l1的下方,直线l2的上方,写出n的取值范围.【变式11-2】(台山市期末)如图,在直角坐标
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度生物医药领域基因编辑技术研发合同3篇
- 2025年度物业服务合同管理与维护条款研究6篇
- 二零二五年度户外广告牌安全检测与维护合同3篇
- 二零二五年度弱电工程环境保护合同2篇
- 2025年度旅行社旅游纪念品开发承包合同3篇
- 二零二五年度有限合伙基金代持协议书3篇
- 二零二五年度学生宿舍租赁协议范文2篇
- 海南医学院《中医文献检索》2023-2024学年第一学期期末试卷
- 轴套编程课程设计
- 轴流式叶轮课程设计
- 2025年公务员考试申论试题与参考答案
- 2024年秋季新人教PEP版三年级上册英语全册教案
- 苏教版四年级上册四则混合运算练习200道及答案
- 2024耐张线夹技术规范
- 2024年中考英语语法感叹句100题精练
- 《海洋与人类》导学案
- 挑战杯红色赛道计划书
- DL∕T 423-2009 绝缘油中含气量的测定方法 真空差压法
- 重整投资保密承诺函(范本)
- 2024年民航安全知识培训考试题库及答案(核心题)
- 抑郁症病例分享
评论
0/150
提交评论