版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省汕尾市2024届八上数学期末综合测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列图形是轴对称图形的有()A.2个 B.3个 C.4个 D.5个2.若正多边形的内角和是,则该正多边形的一个外角为()A. B. C. D.3.下列几个数中,属于无理数的数是()A. B. C.0.101001 D.4.已知某多边形的内角和比该多边形外角和的2倍多,则该多边形的边数是()A.6 B.7 C.8 D.95.下列各式中,正确的是()A.3>2 B.a3•a2=a6 C.(b+2a)(2a-b)=b2-4a2 D.5m+2m=7m26.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A.50° B.60° C.70° D.80°7.如图,直角坐标系中四边形的面积是()A.4 B.5.5 C.4.5 D.58.在平面直角坐标系的第二象限内有一点,点到轴的距离为3,到轴的距离为4,则点的坐标是()A. B. C. D.9.同一直角坐标系中,一次函数y=kx+b的图象如图所示,则满足y≥0的x取值范围是()A.x≤-2 B.x≥-2 C.x<-2 D.x>-210.下列各式从左到右的变形属于分解因式的是()A. B.C. D.11.顺次连接矩形各边中点得到的四边形是()A.平行四边形 B.矩形 C.菱形 D.正方形12.某同学不小心把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是带③去,依据是()A.SSS B.SAS C.AAS D.ASA二、填空题(每题4分,共24分)13.计算的结果为__________.14.某超市第一次用3000元购进某种干果销售,第二次又调拨9000元购进该种干果,但第二次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市先按每千克9元的价格出售,当大部分干果出售后,最后的600千克按原售价的7折售完,超市两次销售这种干果共盈利________元.15.将一副三角板如图叠放,则图中∠AOB的度数为_____.16.已知,则_______________.17.如图,在等腰三角形中,,为边上中点,过点作,交于,交于,若,则的长为_________.18.如图,在等边中,将沿虚线剪去,则___°.三、解答题(共78分)19.(8分)综合与实践阅读以下材料:定义:两边分别相等且夹角互补的两个三角形叫做“互补三角形”.用符号语言表示为:如图①,在△ABC与△DEF中,如果AC=DE,∠C+∠E=180°,BC=EF,那么△ABC与△DEF是互补三角形.反之,“如果△ABC与△DEF是互补三角形,那么有AC=DE,∠C+∠E=180°,BC=EF”也是成立的.自主探究利用上面所学知识以及全等三角形的相关知识解决问题:(1)性质:互补三角形的面积相等如图②,已知△ABC与△DEF是互补三角形.求证:△ABC与△DEF的面积相等.证明:分别作△ABC与△DEF的边BC,EF上的高线,则∠AGC=∠DHE=90°.……(将剩余证明过程补充完整)(2)互补三角形一定不全等,请你判断该说法是否正确,并说明理由,如果不正确,请举出一个反例,画出示意图.20.(8分)如图1,直线与轴交于点,交轴于点,直线与关于轴对称,交轴于点,(1)求直线的解析式;(2)过点在外作直线,过点作于点,过点作于点.求证:(3)如图2,如果沿轴向右平移,边交轴于点,点是的延长线上的一点,且,与轴交于点,在平移的过程中,的长度是否为定值,请说明理由.21.(8分)已知,如图,,E是AB的中点,,求证:.22.(10分)已知:∠1=∠2,∠3=∠1.求证:AC=AD23.(10分)如图,已知中,,.(1)根据要求用尺规作图,不写作法,但要保留作图痕迹:作边的垂直平分线,交于点,交于点,连接;(2)写出图中一对全等的三角形,和一个等腰三角形.24.(10分)已知:如图,在长方形中,,动点从点出发,以每秒的速度沿方向向点运动,动点从点出发,以每秒的速度沿向点运动,同时出发,当点停止运动时,点也随之停止,设点运动的时间为秒.请回答下列问题:(1)请用含的式子表达的面积,并直接写出的取值范围.(2)是否存在某个值,使得和全等?若存在,请求出所有满足条件的值;若不存在,请说明理由.25.(12分)计算:(1);(2).26.(1)计算:(2)计算:
参考答案一、选择题(每题4分,共48分)1、C【解题分析】试题分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选C.考点:轴对称图形.2、C【分析】根据多边形的内角和公式求出多边形的边数,再根据多边形的外角和是固定的,依此可以求出多边形的一个外角.【题目详解】正多边形的内角和是,多边形的边数为多边形的外角和都是,多边形的每个外角故选.【题目点拨】本题主要考查了多边形的内角和与外角和之间的关系,关键是记住内角和的公式与外角和的特征,难度适中.3、D【解题分析】根据无理数是无限不循环小数,或者开不尽方的数,逐一进行判断即可.【题目详解】解:A.=2是有理数,不合题意;
B.=-2是有理数,不合题意;
C.0.101001是有理数,不合题意;
D.是无理数,符合题意.
故选D.【题目点拨】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,或者无限不循环小数为无理数.4、B【分析】多边形的内角和比外角和的2倍多180°,而多边形的外角和是360°,则内角和是900度,n边形的内角和可以表示成(n-2)•180°,设这个多边形的边数是n,就得到方程,从而求出边数.【题目详解】解:根据题意,得
(n-2)•180=360×2+180,
解得:n=1.
则该多边形的边数是1.
故选:B.【题目点拨】此题主要考查了多边形内角和定理和外角和定理,只要结合多边形的内角和公式寻求等量关系,构建方程即可求解.5、A【分析】比较两个二次根式的大小可判别A,根据同底数幂的乘法、平方差公式、合并同类项的运算法则分别计算可判断B、C、D的正误.【题目详解】A、,,∵,∴,故该选项正确;B、•,故该选项错误;C、,故该选项错误;D、,故该选项错误;故选:A.【题目点拨】本题考查了二次根式大小的比较,同底数幂的乘法、平方差公式、合并同类项的运算,熟练掌握相关运算法则是解题的关键.6、B【解题分析】分析:如图,连接BF,在菱形ABCD中,∵∠BAD=80°,∴∠BAC=∠BAD=×80°=40°,∠BCF=∠DCF,BC=CD,∠ABC=180°﹣∠BAD=180°﹣80°=100°.∵EF是线段AB的垂直平分线,∴AF=BF,∠ABF=∠BAC=40°.∴∠CBF=∠ABC﹣∠ABF=100°﹣40°=60°.∵在△BCF和△DCF中,BC=CD,∠BCF=∠DCF,CF=CF,∴△BCF≌△DCF(SAS).∴∠CDF=∠CBF=60°.故选B.7、C【解题分析】过A点作x轴的垂线,垂足为E,将不规则四边形分割为两个直角三角形和一个直角梯形求其面积即可.【题目详解】解:过A点作x轴的垂线,垂足为E,直角坐标系中四边形的面积为:1×1÷2+1×2÷2+(1+2)×2÷2=0.1+1+3=4.1.故选:C.【题目点拨】本题主要考查了点的坐标的意义以及与图形相结合的具体运用.割补法是求面积问题的常用方法.8、C【解题分析】分析:根据第二象限内点的坐标特征,可得答案.详解:由题意,得x=-4,y=3,即M点的坐标是(-4,3),故选C.点睛:本题考查了点的坐标,熟记点的坐标特征是解题关键.横坐标的绝对值就是到y轴的距离,纵坐标的绝对值就是到x轴的距离.9、A【分析】根据图象找到一次函数图象在x轴上方时x的取值范围.【题目详解】解:表示一次函数在x轴上方时,x的取值范围,根据图象可得:.故选:A.【题目点拨】本题考查一次函数与不等式的关系,解题的关键是掌握利用函数图象解不等式的方法.10、B【分析】根据因式分解的是多项式,分解的结果是积的形式,进行判断即可.【题目详解】A.,不是因式分解,不符合题意;B.,是运用平方差公式进行的因式分解,符合题意;C.,最后结果不是乘积的形式,不属于因式分解,不符合题意;D.,不是在整式范围内进行的分解,不属于因式分解,不符合题意.故选:B【题目点拨】本题考查了因式分解的定义,把一个多项式化为几个整式的积的形式,这样的式子变形叫做把这个单项式因式分解,理解因式分解的定义是解决此类问题的关键.11、C【分析】根据三角形的中位线定理,得新四边形各边都等于原四边形的对角线的一半,进而可得连接对角线相等的四边形各边中点得到的四边形是菱形.【题目详解】解:如图,矩形中,分别为四边的中点,四边形是平行四边形,四边形是菱形.故选C.【题目点拨】本题主要考查了矩形的性质、菱形的判定,以及三角形中位线定理,关键是掌握三角形的中位线定理及菱形的判定.12、D【分析】根据全等三角形的判定方法即可进行判断.【题目详解】解:③保留了原三角形的两角和它们的夹边,根据三角形全等的判定方法ASA可配一块完全一样的玻璃,而①仅保留了一个角和部分边,②仅保留了部分边,均不能配一块与原来完全一样的玻璃.故选D.【题目点拨】本题考查的是全等三角形的判定,难度不大,掌握三角形全等的判定方法是解题的关键.二、填空题(每题4分,共24分)13、1【分析】根据分式的加减法法则计算即可得答案.【题目详解】==1.故答案为:1【题目点拨】本题考查分式的加减,同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母分式,再加减;熟练掌握运算法则是解题关键.14、2【分析】设第一次购进干果的单价为x元/千克,则第二次购进干果的单价为1.2x元/千克,根据数量=总价÷单价,结合第二次购进干果数量是第一次的2倍还多300千克,即可得出关于x的分式方程,解之即可得出x的值,进而即可求出第一、二次购进干果的数量,再利用利润=销售收入﹣成本即可得出结论.【题目详解】设第一次购进干果的单价为x元/千克,则第二次购进干果的单价为1.2x元/千克,根据题意得:2300,解得:x=5,经检验,x=5是原方程的解.当x=5时,600,1.1×9+600×9×0.7﹣3000﹣9000=2(元).故超市两次销售这种干果共盈利2元.故答案为:2.【题目点拨】本题考查了分式方程的应用,根据数量=总价÷单价,结合第二次购进干果数量是第一次的2倍还多300千克,列出关于x的分式方程是解答本题的关键.15、【分析】根据三角形的外角的性质计算即可.【题目详解】由三角形的外角的性质可知,∠AOB=∠CAO-∠B=60°-45°=15°,
故答案为:15°.【题目点拨】本题考查了三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.16、【分析】依据比例的性质,即可得到a=b,再代入分式化简计算即可.【题目详解】解:∵,
∴a=5a-5b,
∴a=b,
∴,
故答案为:.【题目点拨】本题主要考查了比例的性质,解题时注意:内项之积等于外项之积.17、1【分析】连接BD,利用ASA证出△EDB≌△FDC,从而证出S△EDB=S△FDC,从而求出S△DBC,然后根据三角形的面积即可求出CD,从而求出AC,最后利用勾股定理即可求出结论.【题目详解】解:连接BD∵在等腰三角形中,,为边上中点,∴AB=BC,BD=CD=AD,∠BDC=90°,∠EBD=,∠C=45°∵∴∠EDF=∠BDC=90°,∠EBD=∠C=45°∴∠EDB=∠FDC在△EDB和△FDC中∴△EDB≌△FDC∴S△EDB=S△FDC∴S△DBC=S△FDC+S△BDF=S△EDB+S△BDF=∴∴CD2=18∴CD=∴AC=2CD=∴AB2+BC2=AC2∴2AB2=()2故答案为:1.【题目点拨】此题考查的是全等三角形的判定及性质、等腰三角形的性质和勾股定理,掌握全等三角形的判定及性质、等腰三角形的性质和勾股定理是解决此题的关键.18、240【分析】根据等边三角形的性质可得,再让四边形的内角和减去即可求得答案.【题目详解】∵是等边三角形∴∴∴故答案是:【题目点拨】本题考查了等边三角形的性质,三角形的内角和、外角和定理以及四边形的内角和是.因为涉及到的知识点较多,所以解题方法也较多,需注意解题过程要规范、解题思路要清晰.三、解答题(共78分)19、(1)见解析;(2)不正确,理由见解析【分析】(1)已知△ABC与△DEF是互补三角形,可得∠ACB+∠E=180°,AC=DE,BC=EF,证得∠ACG=∠E,证明△AGC≌△DHE,得到AG=DH,所以,即△ABC与△DEF的面积相等.(2)不正确.先画出反例图,证明△ABC≌△DEF,△ABC与△DEF是互补三角形.互补三角形一定不全等的说法错误.【题目详解】(1)∵△ABC与△DEF是互补三角形,∴∠ACB+∠E=180°,AC=DE,BC=EF.又∵∠ACB+∠ACG=180°,∴∠ACG=∠E,在△AGC与△DHE中,∴△AGC≌△DHE(AAS)∴AG=DH.∴即△ABC与△DEF的面积相等.(2)不正确.反例如解图,在△ABC和△DEF中,∴△ABC≌△DEF(SAS),∴△ABC与△DEF是互补三角形.∴互补三角形一定不全等的说法错误.【题目点拨】本题考查了全等三角形的判定及性质定理,利用AAS和SAS证明三角形全等,已知两个三角形全等,可得到对应边相等.20、(1);(2)见解析;(3)是,理由见解析【分析】(1)先根据对称点的特点得出C点的坐标,然后利用待定系数法即可求出直线BC的解析式;(2)首先通过等腰直角三角形的性质得出,然后证明,则有,最后利用即可证明;(3)过点作交轴于点,首先根据平行线的性质和等腰三角形的性质得出,进而可证,则有,最后利用则可证明OP为定值.【题目详解】解:(1),直线与关于轴对称,交轴于点,∴点坐标是.设直线解析式为,把代入得:解得:∴直线BC的解析式为;(2),,和是全等的等腰直角三角形,,.又,,,.在中,,;(3)为定值,理由如下:过点作交轴于点,,.,,,.,.,.在和中,,,,为定值.【题目点拨】本题主要考查全等三角形的判定与性质,等腰三角形的性质,待定系数法求一次函数解析式,掌握全等三角形的判定与性质,等腰三角形的性质和待定系数法是解题的关键.21、见解析【分析】由CE=DE易得∠ECD=∠EDC,结合AB∥CD易得∠AEC=∠BED,由此再结合AE=BE,CE=DE即可证得△AEC≌△BED,由此即可得到AC=BD.【题目详解】∵,∴,∵,∴,,∴,又∵是AB的中点,∴,在和中,,∴≌.∴.【题目点拨】熟悉“等腰三角形的性质、平行线的性质和全等三角形的判定方法”是解答本题的关键.22、见解析【分析】由∠3=∠1可得∠ABD=∠ABC,然后即可根据ASA证明△ABC≌△ABD,再根据全等三角形的性质即得结论.【题目详解】证明:∵∠3=∠1,∴∠ABD=∠ABC,在△ABC和△ABD中,∵∠2=∠1,AB=AB,∠ABC=∠ABD,∴△ABC≌△ABD(ASA),∴AC=AD.【题目点拨】本题考查了全等三角形的判定和性质,属于基础题型,证明△ABC≌△ABD是解本题的关键.23、(1)答案见解析;(2)△ACD≌△AED或△ACD≌△BED或△AED≌△BED,△ABD为等腰三角形【解题分析】(1)由题意直接根据垂直平分线的作图方法按照题意进行作图即可;(2)根据全等三角形的性质和判定以及等腰三角形的定义进行分析即可.【题目详解】解:(1)作图如图所示:(2)根据全等三角形的性质可知:图中有△ACD≌△AED或△ACD≌△BED或△AED≌△BED,根据等腰三角形的定义可知:△ABD为等腰三角形.【题目点拨】本题考查的是作图-基本作图以及全等三角形的判定以及等腰三角形的性质,熟知线段垂直平分线的作法和全等三角形的性质和判定以及等腰三角形的定义是解答此题的关键.24、(1)(0<t≤1.5),(1.5<t≤4),(4<t<5);(2)当t=3时,△ABP和△CDQ全等.【分析】(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 师德先进学校事迹材料7篇
- 北京市海淀区2024−2025学年高二上学期10月阶段考试数学试题含答案
- 《教育心理学》读后感6篇
- 湖北省鄂州市(2024年-2025年小学五年级语文)统编版摸底考试(下学期)试卷及答案
- 2024年导线剥皮机项目资金需求报告代可行性研究报告
- 2023年辅助功能检测系统资金筹措计划书
- 市政道路路基土方、石方施工规范编制说明
- 七年级历史上册教案集
- 文化产业示范园区及示范基地创建管理工作办法
- 贵州省贵阳市部分校联盟2024-2025学年八年级上学期期中联考物理试题(无答案)
- 2024年高考生物一轮复习特异性免疫课件
- 无人机现场服务方案
- 骨质疏松患者的护理干预与教育
- 述职报告 设备主管述职报告
- 卫生院健康扶贫工作实施方案
- 西部地区中等职业教育发展的现状与对策-以麻江县为例的中期报告
- 中职幼儿保育职业生涯规划书
- 胶质瘤发病机制
- 好看的皮囊千篇一律有趣的灵魂万里挑一
- 某房地产公司项目定位分析
- 部编版三年级上册道德与法治作业设计
评论
0/150
提交评论