版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省阳泉市2024届八上数学期末考试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.给出下列实数:、、、、、、(每相邻两个1之间依次多一个,其中无理数有A.2个 B.3个 C.4个 D.5个2.已知+=0,则的值是()A.-6 B. C.9 D.-83.下列条件中能作出唯一三角形的是()A.AB=4cm,BC=3cm,AC=5cmB.AB=2cm,BC=6cm,AC=4cmC.∠A=∠B=∠C=60°D.∠A=30°,∠B=60°,∠C=90°4.如图所示的网格由边长相同的小正方形组成,点A、B、C、D、E、F、G在小正方形的顶点上,则△ABC的重心是()A.点D B.点E C.点F D.点G5.如图,在△ABC中,点D是边BC上的点(与B、C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB、AC于E、F两点,下列说法正确的是()A.若AD平分∠BAC,则四边形AEDF是菱形B.若BD=CD,则四边形AEDF是菱形C.若AD垂直平分BC,则四边形AEDF是矩形D.若AD⊥BC,则四边形AEDF是矩形6.等腰三角形的一个角比另一个角的倍少度,则等腰三角形顶角的度数是()A. B.或 C.或 D.或或7.尺规作图作的平分线方法如下:以为圆心,任意长为半径画弧交、于、,再分别以点、为圆心,以大于长为半径画弧,两弧交于点,作射线由作法得的根据是()A.SAS B.ASA C.AAS D.SSS8.下列运算正确的是()A. B.( C. D.9.如图,长和宽为a、b的长方形的周长为14,面积为10,则ab(a+b)的值为()A.140 B.70 C.35 D.2410.下列一次函数中,y的值随着x值的增大而减小的是().A.y=x B.y=-x C.y=x+1 D.y=x-1二、填空题(每小题3分,共24分)11.如图,在中,,点是边上一动点(不与点重合),过点作的垂线交于点,点与点关于直线对称,连接,当是等腰三角形时,的长为__________.12.一种花粉颗粒的直径约为0.0000065米,将0.0000065用科学记数法表示为___.13.如图,直线:与直线:相交于点,则关于x的不等式的解集为______.14.如果a+b=5,ab=﹣3,那么a2+b2的值是_____.15.如图,点是直线上的动点,过点作垂直轴于点,设点的坐标为,则点的坐标为______(用含的代数式表示),在轴上是否存在点,使为等腰直角三角形,请写出符合条件的点的坐标______.16.分解因式:x2-2x+1=__________.17.如图所示,为一个沙漏在计时过程中所剩沙子质量(克)与时间(小时)之间关系的图象,则从开始计时到沙子漏光所需的时间为_____小时.18.若a=2019,b=2020,则[a2(a﹣2b)﹣a(a﹣b)2]÷b2的值为_____.三、解答题(共66分)19.(10分)用简便方法计算:(1)(2)20.(6分)已知的积不含项与项,求的值是多少?21.(6分)某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示:甲乙进价(元/部)40002500售价(元/部)43003000该商场计划购进两种手机若干部,共需15.5万元,预计全部销售后可获毛利润共2.1万元.(毛利润=(售价﹣进价)×销售量)(1)该商场计划购进甲、乙两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少甲种手机的购进数量,增加乙种手机的购进数量.已知乙种手机增加的数量是甲种手机减少的数量的2倍,而且用于购进这两种手机的总资金不超过16万元,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润.22.(8分)如图,AD是△ABC的外角平分线,∠B=35°,∠DAE=60°,求∠C的度数.23.(8分)小林在某商店购买商品A、B共三次,只有一次购买时,商品A、B同时打折,其余两次均按标价购买,三次购买商品A、B的数量和费用如下表:购买商品A的数量(个)购买商品B的数量(个)购买总费用(元)第一次购物651140第二次购物371110第三次购物981062(1)小林以折扣价购买商品A、B是第次购物;(2)求出商品A、B的标价;(3)若商品A、B的折扣相同,问商店是打几折出售这两种商品的?24.(8分)如图,等腰直角三角形中,,,点坐标为,点坐标为,且,满足.(1)写出、两点坐标;(2)求点坐标;(3)如图,,为上一点,且,请写出线段的数量关系,并说明理由.25.(10分)如图,在△ABC中,边AB、AC的垂直平分线分别交BC于D、E.(1)若BC=6,求△ADE的周长.(2)若∠DAE=60°,求∠BAC的度数.26.(10分)以下是小嘉化简代数式的过程.解:原式……①……②……③(1)小嘉的解答过程在第_____步开始出错,出错的原因是_____________________;(2)请你帮助小嘉写出正确的解答过程,并计算当时代数式的值.
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据无理数是无限不循环小数,可得答案.【题目详解】解:=−5,=1.2,
实数:、、、、、、(每相邻两个1之间依次多一个0),其中无理数有、、-0.1010010001…(每相邻两个1之间依次多一个0)共3个.
故选:B.【题目点拨】本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数.2、B【分析】根据非负数的性质可得x、y的值,代入即可得出答案.【题目详解】解:∵+=0,∴x+2=0,y-3=0,∴x=-2,y=3,∴yx=3-2=.故选:B.【题目点拨】本题考查了非负数的性质——偶次幂和二次根式,以及负指数幂,根据非负数的性质得出x、y的值是解决此题的关键.3、A【解题分析】看是否符合所学的全等的公理或定理及三角形三边关系即可.【题目详解】A.符合全等三角形的SSS,能作出唯一三角形,故该选项符合题意,B.AB+AC=BC,不符合三角形三边之间的关系,不能作出三角形;故该选项不符合题意,C.属于全等三角形判定中的AAA的情况,不能作出唯一三角形;故该选项不符合题意,D.属于全等三角形判定中的AAA的情况,不能作出唯一三角形;故该选项不符合题意,故选A.【题目点拨】此题主要考查由已知条件作三角形,应用了全等三角形的判定和三角形三边之间的关系.熟练掌握全等三角形的判定定理是解题关键.4、A【分析】三角形的重心即为三角形中线的交点,故重心一定在中线上,即可得出答案.【题目详解】解:如图由勾股定理可得:AN=BN=,BM=CM=∴N,M分别是AB,BC的中点∴直线CD经过△ABC的AB边上的中线,直线AD经过△ABC的BC边上的中线,∴点D是△ABC重心.故选:A.【题目点拨】本题主要考查了三角形的重心的定义,属于基础题意,比较简单.5、A【分析】由矩形的判定和菱形的判定即可得出结论.【题目详解】解:A选项:若AD平分∠BAC,则四边形AEDF是菱形;正确;B选项:若BD=CD,则四边形AEDF是平行四边形,不一定是菱形;错误;C选项:若AD垂直平分BC,则四边形AEDF是菱形,不一定是矩形;错误;D选项:若AD⊥BC,则四边形AEDF是平行四边形,不一定是矩形;错误;故选A.【题目点拨】本题考查了矩形的判定、菱形的判定;熟记菱形和矩形的判定方法是解决问题的关键.6、D【分析】设另一个角是x,表示出一个角是2x-20°,然后分①x是顶角,2x-20°是底角,②x是底角,2x-20°是顶角,③x与2x-20°都是底角根据三角形的内角和等于180°与等腰三角形两底角相等列出方程求解即可.【题目详解】设另一个角是x,表示出一个角是2x-20°,①x是顶角,2x-20°是底角时,x+2(2x-20°)=180°,解得x=44°,∴顶角是44°;②x是底角,2x-20°是顶角时,2x+(2x-20°)=180°,解得x=50°,∴顶角是2×50°-20°=80°;③x与2x-20°都是底角时,x=2x-20°,解得x=20°,∴顶角是180°-20°×2=140°;综上所述,这个等腰三角形的顶角度数是44°或80°或140°.故答案为:D.【题目点拨】本题考查了等腰三角形两底角相等的性质,三角形的内角和定理,难点在于分情况讨论,特别是这两个角都是底角的情况容易漏掉而导致出错.7、D【解题分析】解:以O为圆心,任意长为半径画弧交OA,OB于C,D,即OC=OD;以点C,D为圆心,以大于CD长为半径画弧,两弧交于点P,即CP=DP;再有公共边OP,根据“SSS”即得△OCP≌△ODP.故选D.8、C【题目详解】A、x•x2=x3同底数幂的乘法,底数不变指数相加,故本选项错误;
B、(x5)3=x15,幂的乘方,底数不变指数相乘,故本选项错误.
C、(ab)3=a3b3,故本选项正确;
D、a6÷a2=a4同底数幂的除法,底数不变指数相减,故本选项错误.
故选C.【题目点拨】同底数幂的除法,底数不变指数相减;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘.9、B【分析】直接利用长方形面积求法以及长方形周长求法得出ab,a+b的值,进而得出答案.【题目详解】解:∵长和宽为a、b的长方形的周长为14,面积为10,∴2(a+b)=14,ab=10,则a+b=7,故ab(a+b)=7×10=1.故选:B.【题目点拨】此题主要考查了单项式乘以多项式,正确得出a+b的值是解题关键.10、B【分析】根据一次函数的性质依次分析各项即可.【题目详解】解:A、C、D中,y的值随着x值的增大而增大,不符合题意;B、,y的值随着x值的增大而减小,本选项符合题意.故选B.【题目点拨】本题考查的是一次函数的性质,解答本题的关键是熟练掌握一次函数的性质:当时,y的值随着x值的增大而增大;当时,y的值随着x值的增大而减小.二、填空题(每小题3分,共24分)11、或【分析】由勾股定理求出BC,分两种情况讨论:(1)当,根据等腰直角三角形的性质得出BF的长度,即可求出BD的长;(2)当,根据求出BF的长度,即可求出BD的长.【题目详解】∵等腰中,∴分两种情况(1)当,∴∴∴∵直线l垂直平分BF∴(2)当,∵直线l垂直平分BF∴故答案为:或.【题目点拨】本题考查了三角形线段长的问题,掌握勾股定理以及等腰直角三角形的性质是解题的关键.12、【解题分析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).0.0000065第一个有效数字前有6个0(含小数点前的1个0),从而.13、x≥1.【分析】把点P坐标代入y=x+1中,求得两直线交点坐标,然后根据图像求解.【题目详解】解:∵与直线:相交于点,∴把y=2代入y=x+1中,解得x=1,
∴点P的坐标为(1,2);
由图可知,x≥1时,.故答案为:x≥1.【题目点拨】本题考查了一次函数与一元一次不等式,待定系数法求一次函数解析式,联立两直线解析式求交点坐标的方法,求一次函数与一元一次不等式关键在于准确识图,确定出两函数图象的对应的函数值的大小.14、31【分析】先根据完全平方公式:可得:,再将a+b=5,ab=﹣3代入上式计算即可.【题目详解】因为,所以,将a+b=5,ab=﹣3代入上式可得:,故答案为:31.【题目点拨】本题主要考查完全平方公式,解决本题的关键是要熟练应用完全平方公式进行灵活变形.15、,,或【分析】由点的坐标为,把x=a代入一次函数解析式即可得点M的坐标,再由使为等腰直角三角形的点P坐标可分以下几种情况进行讨论:①当点M在y轴的右侧,即∠PMN=90°、∠MPN=90°或∠MNP=90°,②当点M在y轴的左侧,即当∠PMN=90°、∠MPN=90°或∠MNP=90°进行求解即可.【题目详解】解:由点是直线上的动点,过点作垂直轴于点,设点的坐标为,点的坐标为,为等腰直角三角形,则有:①当点M在y轴的右侧,即∠PMN=90°,如图所示:MP=MN,即,解得(不符合题意,舍去),同理当∠MNP=90°时,NP=MN,即,不符合题意,当∠MPN=90°时,则有,无解;②当点M在y轴的左侧,即当∠PMN=90°,如图所示:四边形MNOP是正方形,MN=ON=OP=MP,,解得或,点P坐标为或;当∠MNP=90°时,则有:MN=PN,即点P与原点重合,点P坐标为,当∠MPN=90°时,如图所示:过点P作PA⊥MN交于点A,,PA=ON,,解得,点P坐标为;综上所述:在y轴上存在点,使为等腰直角三角形,点P坐标为,,或.故答案为;,,或.【题目点拨】本题主要考查一次函数与几何的综合,熟练掌握等腰直角三角形的性质及一次函数的性质是解题的关键.16、(x-1)1.【题目详解】由完全平方公式可得:故答案为.【题目点拨】错因分析容易题.失分原因是:①因式分解的方法掌握不熟练;②因式分解不彻底.17、【分析】根据图象可得沙漏漏沙的速度,从而得出从开始计时到沙子漏光所需的时间.【题目详解】沙漏漏沙的速度为:15﹣6=9(克/小时),∴从开始计时到沙子漏光所需的时间为:15÷9=(小时).故答案为:.【题目点拨】本题考查了一次函数的运用,学会看函数图象,理解函数图象所反映的实际意义,从函数图象中获取信息,并且解决有关问题.18、﹣1.【分析】原式中括号中利用完全平方公式,单项式乘以多项式法则计算,合并后利用多项式除以单项式法则计算得到最简结果,把a与b的值代入计算即可求出值.【题目详解】解:原式=(a3﹣2a2b﹣a3+2a2b﹣ab2)]÷b2=﹣a,当a=1时,原式=﹣1.故答案为:﹣1.【题目点拨】本题主要考查了整式乘法的运用,准确的展开并化成最简的式子,再把已知的数值代入求解,化简是关键一步.三、解答题(共66分)19、(1)1;(2)-1【分析】(1)把原式变成符合完全平方公式的形式后,利用完全平方公式计算即可得到结果;(2)把原式的前两项用平方差公式变形后及时可得到结果.【题目详解】解:(1)原式=
=(100−99)2
=1(2)原式=(2019-1)×(2019+1)−20192
=20192−12−20192
=−1;【题目点拨】本题考查了运用平方差公式和完全平方公式进行简便计算,熟练掌握公式是解本题的关键.20、x3+1【解题分析】试题分析:先根据多项式乘多项式的法则计算,再让x2项和x项的系数为0,求得a,c的值,代入求解.解:∵(x+a)(x2﹣x+c),=x3﹣x2+cx+ax2﹣ax+ac,=x3+(a﹣1)x2+(c﹣a)x+ac,又∵积中不含x2项和x项,∴a﹣1=0,c﹣a=0,解得a=1,c=1.又∵a=c=1.∴(x+a)(x2﹣x+c)=x3+1.考点:多项式乘多项式.21、(1)商场计划购进甲种手机20部,乙种手机30部.(2)当该商场购进甲种手机11部,乙种手机40部时,全部销售后获利最大.最大毛利润为2.41万元.【分析】(1)设商场计划购进甲种手机x部,乙种手机y部,根据两种手机的购买金额为11.1万元和两种手机的销售利润为2.1万元建立方程组求出其解即可.(2)设甲种手机减少a部,则乙种手机增加2a部,表示出购买的总资金,由总资金部超过16万元建立不等式就可以求出a的取值范围,再设销售后的总利润为W元,表示出总利润与a的关系式,由一次函数的性质就可以求出最大利润.【题目详解】解:(1)设商场计划购进甲种手机x部,乙种手机y部,根据题意,得解得:.答:商场计划购进甲种手机20部,乙种手机30部.(2)设甲种手机减少a部,则乙种手机增加2a部,根据题意,得,解得:a≤1.设全部销售后获得的毛利润为W元,由题意,得.∵k=0.07>0,∴W随a的增大而增大.∴当a=1时,W最大=2.41.答:当该商场购进甲种手机11部,乙种手机40部时,全部销售后获利最大.最大毛利润为2.41万元.22、85°【解题分析】试题分析:先根据AD是△ABC的外角∠CAE的角平分线,∠DAE=60°求出∠CAE的度数,再根据三角形外角的性质即可得出结论.试题解析:∵AD平分∠CAE,∴∠DAE=∠CDA=60°∴∠CAE=120°∵∠CAE=∠B+∠C∴∠C=∠CAE-∠B=120°-35°=85°.23、(1)三;(2)商品A的标价为90元,商品B的标价为120元;(3)1折.【分析】(1)根据图表可得小林第三次购物花的钱最少,买到A、B商品又是最多,所以小林以折扣价购买商品A、B是第三次购物;(2)设商品A的标价为x元,商品B的标价为y元,列出方程组求出x和y的值;(3)设商店是打m折出售这两种商品,根据打折之后购买9个A商品和8个B商品共花费1012元,列出方程求解即可.【题目详解】(1)小林以折扣价购买商品A、B是第三次购物;(2)设商品A的标价为x元,商品B的标价为y元,根据题意,得,解得:.答:商品A的标价为90元,商品B的标价为120元;(3)设商店是打m折出售这两种商品,由题意得,(9×90+8×120)×=1012,解得:m=1.答:商店是打1折出售这两种商品的.24、(1)点A的坐标为,点C的坐标为;(2)点B的坐标为(2,4);(3)MN=CN+AM,理由见解析【分析】(1)根据绝对值的非负性和平方的非负性即可求出a、b的值,从而求出、两点坐标;(2)过点A作AE∥y轴,过点B作BE⊥AE,作BD⊥x轴,设点B的坐标为(x,y),分别用x、y表示出CD、BE、AE的长,然后利用AAS证出△EBA≌△DBC,可得BE=BD,AE=CD,列出方程即可求出点B的坐标;(3)过点B作BF⊥BM,交AC的延长线与点F,连接MF,利用SAS证出△ABM≌△CBF,从而得到AM=CF,BM=BF,∠AMB=∠CFB,根据等边对等角可得∠BMF=∠BFM,然后证出∠FMN=∠MFN,再根据等角对等边可得MN=NF,即可得出结论.【题目详解】解:(1)∵∴∵∴解得:a=-2,b=2∴点A的坐标为,点C的坐标为;(2)过点A作AE∥y轴,过点B作BE⊥AE,作BD⊥x轴,如下图所示设点B的坐标为(x,y)∴BD=y,OD=x∴CD=4-x,BE=x-(-2)=x+2,AE=y-2∵BD⊥x轴∴BD∥y轴∴AE∥BD∴∠DBE=180°-∠AEB=90°∴∠EBA+∠ABD=90°∵等腰直角三角形中,,∴∠DBC+∠ABD=90°∴∠EBA=∠DBC在△EBA和△DBC中∴△EBA≌△DBC∴BE=BD,AE=CD即x+2=y,y-2=4-x解得:x=2,y=4∴点B的坐标为(2,4);(3)MN=CN+AM,理由如下过点B作BF⊥BM,交AC的延长线与点F,连接MF∴∠MBC+∠CBF=90°∵△ABC为等腰三角形∴BA=BC,∠BAC=∠BCA=45°,∠ABC=90°∴∠MBC+∠ABM=90°,∠BCF=180°-∠BCA=135°,∠BAM=∠MAC+∠BAC=135°∴∠ABM=∠CBF,∠BAM=∠BCF在△ABM和△CBF中∴△
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 五上肢筋膜六上肢局部结构一肩肌二臂肌三前臂肌四手
- 一休息指一段时间内相对减少活动使人生理和心理上得到松弛清除
- 《呼吸系统的用药》课件
- 危重困难病人护理笔记
- 《入库业务》课件
- 学校管理员工培训
- 数学学案:课堂导学反证法
- 公共部门绩效管理案例分析
- 《送电线路施工测量》课件
- 产科大出血的容量管理
- 冶金工程职业生涯规划
- 医疗卫生机构反恐
- 2024年广东普通专升本《公共英语》完整版真题
- 数据中心储能白皮书
- 化学实验室安全智慧树知到期末考试答案2024年
- 《养老护理员》-课件:协助老年人穿脱简易矫形器
- 浅谈美食类自媒体《日食记》的商业价值和运营策略
- 室内设计大学生职业生涯规划模板
- 客户服务方面的SWOT分析
- 电工职业生涯展示
- 经典房地产营销策划培训(全)
评论
0/150
提交评论