云南省曲靖市马龙县2024届八上数学期末质量检测试题含解析_第1页
云南省曲靖市马龙县2024届八上数学期末质量检测试题含解析_第2页
云南省曲靖市马龙县2024届八上数学期末质量检测试题含解析_第3页
云南省曲靖市马龙县2024届八上数学期末质量检测试题含解析_第4页
云南省曲靖市马龙县2024届八上数学期末质量检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省曲靖市马龙县2024届八上数学期末质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列语句,其中正确的有()①同位角相等;②点(0,-2)在x轴上;③点(0,0)是坐标原点A.0个 B.1个 C.2个 D.3个2.如图是边长为10的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:)不正确的()A. B.C. D.3.一个正多边形,它的一个内角恰好是一个外角的倍,则这个正多边形的边数是()A.八 B.九 C.十 D.十二4.如图,在△ABC中,AD⊥BC于点D,BE⊥AC于点E,AD与BE相交于点F,若BF=AC,∠CAD=25°,则∠ABE的度数为()A.30° B.15° C.25° D.20°5.如图,△ABC≌△CDA,则下列结论错误的是()A.AC=CA B.AB=AD C.∠ACB=∠CAD D.∠B=∠D6.下列运算正确的是()A.(﹣a3)2=﹣a6 B.2a2+3a2=6a2C.2a2•a3=2a6 D.7.若点关于轴对称的点为,则点关于轴对称的点的坐标为()A. B. C. D.8.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于A.44° B.60° C.67° D.77°9.已知三角形两边的长分别是3和7,则此三角形第三边的长可能是()A.16 B.11 C.3 D.610.A、B两地相距千米,一艘轮船从A地顺流行至B地,又立即从B地逆流返回A地,共用9小时,已知水流速度为千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程为()A. B.C. D.11.下列说法错误的是()A.0.350是精确到0.001的近似数B.3.80万是精确到百位的近似数C.近似数26.9与26.90表示的意义相同D.近似数2.20是由数四会五入得到的,那么数的取值范围是12.如图,以两条直线,的交点坐标为解的方程组是()A. B.C. D.二、填空题(每题4分,共24分)13.如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上.顶点B的坐标为(3,),点C的坐标为(1,0),且∠AOB=30°点P为斜边OB上的一个动点,则PA+PC的最小值为_________.14.已知点P(﹣10,1)关于y轴对称点Q(a+b,b﹣1),则的值为_____.15.一个大型商场某天销售的某品牌的运动鞋的数量和尺码如下表:这些鞋的尺码组成的一组数据的中位数是_______.16.如果一组数据﹣3,﹣2,0,1,x,6,9,12的平均数为3,那么这组数据的中位数是_____.17.如图,矩形ABCD中,直线MN垂直平分AC,与CD,AB分别交于点M,N.若DM=2,CM=3,则矩形的对角线AC的长为_____.18.如图所示,∠1=130°,则∠A+∠B+∠C+∠D+∠E+∠F的度数为_____.三、解答题(共78分)19.(8分)(1)计算:;(2)解分式方程:.20.(8分)金堂县在创建国家卫生城市的过程中,经调查发现居民用水量居高不下,为了鼓励居民节约用水,拟实行新的收费标准.若每月用水量不超过12吨,则每吨按政府补贴优惠价元收费;若每月用水量超过12吨,则超过部分每吨按市场指导价元收费.毛毛家家10月份用水22吨,交水费59元;11月份用水17吨,交水费1.5元.(1)求每吨水的政府补贴优惠价和市场指导价分别是多少元?(2)设每月用水量为吨,应交水费为元,请写出与之间的函数关系式;(3)小明家12月份用水25吨,则他家应交水费多少元?21.(8分)先化简,再求值:,其中m=9.22.(10分)如图1,等腰直角三角形ABP是由两块完全相同的小直角三角板ABC、EFP(含45°)拼成的,其中△ABC的边BC在直线上,AC⊥BC且AC=BC;△EFP的边FP也在直线上,边EF与边AC重合,EF⊥FP且EF=FP.(1)将三角板△EFP沿直线向左平移到图2的位置时,EP交AC于点Q,连接AP、BQ.猜想并写出BQ与AP所满足的数量关系和位置关系,并证明你的猜想;(2)将三角板△EFP沿直线向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP、BQ.你认为(1)中猜想的关系还成立吗?请写出你的结论(不需证明)23.(10分)计算:(﹣)﹣2+4×(﹣1)2019﹣|﹣23|+(π﹣5)024.(10分)共享经济与我们的生活息息相关,其中,共享单车的使用给我们的生活带来了很多便利,但在使用过程中出现一些不文明现象.某市记者为了解“使用共享单车时的不文明行为”,随机抽查了该市部分市民,并对调查结果进行了整理,绘制了如下两幅尚不完整的统计图表(每个市民仅持有一种观点).调查结果分组统计表组别观点频数(人数)A损坏零件50B破译密码20C乱停乱放aD私锁共享单车,归为己用bE其他30调查结果扇形图请根据以上信息,解答下列问题:(1)填空:a=;b=;m=;(2)求扇形图中B组所在扇形的圆心角度数;(3)若该市约有100万人,请你估计其中持有D组观点的市民人数.25.(12分)已知一个多边形的内角和,求这个多边形的边数.26.军运会前某项工程要求限期完成,甲队独做正好按期完成,乙队独做则要误期4天,现两队合作3天后,余下的工程再由乙队独做,比限期提前一天完成.(1)请问该工程限期是多少天?(2)已知甲队每天的施工费用为1000元,乙队每天的施工费用为800元,要使该项工程的总费用不超过7000元,乙队最多施工多少天?

参考答案一、选择题(每题4分,共48分)1、B【分析】根据平行线的性质以及平面直角坐标系的点坐标特点进行判断,找到正确的结论个数即可.【题目详解】解:①两直线平行,同位角相等,故此结论错误;②点(0,-2)的横坐标为0,是y轴上的点,故此结论错误;③点(0,0)是坐标原点,故此结论正确.∴正确的结论有1个.故选:B【题目点拨】本题考查了平行线的性质与平面直角坐标系的点坐标特点,掌握平行线的性质和平面直角坐标系点的坐标特点是解答此题的关键.2、A【解题分析】试题分析:正方形的对角线的长是,所以正方形内部的每一个点,到正方形的顶点的距离都有小于14.14,故答案选A.考点:正方形的性质,勾股定理.3、C【分析】可设正多边形一个外角为x,则一个内角为4x,根据一个内角和一个外角互补列方程解答即可求出一个外角的度数,再根据多边形的外角和为360°解答即可.【题目详解】设正多边形一个外角为x,则一个内角为4x,根据题意得:x+4x=180°x=36°360°÷36°=10故这个正多边形为十边形.故选:C【题目点拨】本题考查的是正多边形的外角与内角,掌握正多边形的外角和为360°是关键.4、D【分析】利用全等三角形的性质即可解决问题.【题目详解】解:证明:∵AD⊥BC,∴∠BDF=∠ADC,又∵∠BFD=∠AFE,∴∠CAD=∠FBD,在△BDF和△ACD中,∴△BDF≌△ACD(AAS),∴∠DBF=∠CAD=25°.∵DB=DA,∠ADB=90°,∴∠ABD=45°,∴∠ABE=∠ABD﹣∠DBF=20°故选:D.【题目点拨】本题考查全等三角形的判定和性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.5、B【解题分析】∵△ABC≌△CDA,∴AB=CD,AC=CA,BC=DA,∠ACB=∠CAD,∠B=∠D,∠DCA=∠BAC.故B选项错误.6、D【解题分析】分别根据幂的乘方、合并同类项法则、同底数幂的乘法及分式的乘方逐一计算即可判断.【题目详解】A、(-a3)2=a6,此选项错误;B、2a2+3a2=5a2,此选项错误;C、2a2•a3=2a5,此选项错误;D、(,此选项正确;故选D.【题目点拨】本题主要考查整式的运算,解题的关键是掌握幂的乘方、合并同类项法则、同底数幂的乘法及分式的乘方的运算法则.7、C【分析】直接利用关于y轴对称点的性质得出a,b的值,进而利用关于x轴对称点的性质得出答案.【题目详解】解:∵点P(2a-1,3)关于y轴对称的点为Q(3,b),

∴2a-1=-3,b=3,

解得:a=-1,

故M(-1,3)关于x轴对称的点的坐标为:(-1,-3).

故选:C.【题目点拨】本题考查关于x轴、y轴对称点的性质,正确得出a,b的值是解题关键.8、C【解题分析】分析:△ABC中,∠ACB=90°,∠A=22°,∴∠B=90°-∠A=68°.由折叠的性质可得:∠CED=∠B=68°,∠BDC=∠EDC,∴∠ADE=∠CED﹣∠A=46°.∴.故选C.9、D【分析】根据三角形的三边关系即可解答.【题目详解】解:设第三边的长度为x,由题意得:7﹣3<x<7+3,即:4<x<10,故选:D.【题目点拨】本题考查三角形三边关系,解题的关键是掌握三角形两边之和大于第三边,两边之差小于第三边.10、A【分析】分别表示出顺水航行时间和逆水航行的时间,根据“顺水航行时间+逆水航行时间=9”列方程即可求解.【题目详解】解:设该轮船在静水中的速度为x千米/时,列方程得.故选:A【题目点拨】本题考查了列分式方程解应用题,熟知“顺水速=静水速+水速”,“逆水速=静水速-水速”是解题关键.11、C【分析】根据近似数的精确度对各项进行判断选择即可.【题目详解】A.0.350是精确到0.001的近似数,正确;B.3.80万是精确到百位的近似数,正确;C.近似数26.9精确到十分位,26.90精确到百分位,表示的意义不相同,所以错误;D.近似数2.20是由数四会五入得到的,那么数的取值范围是,正确;综上,选C.【题目点拨】本题考查了近似数,精确到第几位是精确度常用的表示形式,熟知此知识点是解题的关键.12、C【分析】两条直线的交点坐标应该是联立两个一次函数解析式所组方程组的解.因此本题需先根据两直线经过的点的坐标,用待定系数法求出两直线的解析式.然后联立两函数的解析式可得出所求的方程组.【题目详解】直线l1经过(2,3)、(0,−1),设直线l1为y=kx+b(k≠0)代入得,解得∴l1函数解析式为y=2x−1;直线l2经过(2,3)、(0,1),设直线l2为y=px+q(p≠0)代入得,解得∴l2函数解析式为y=x+1;因此以两条直线l1,l2的交点坐标为解的方程组是:.故选:C.【题目点拨】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.二、填空题(每题4分,共24分)13、【题目详解】解:作A关于OB的对称点D,连接CD交OB于P,连接AP,过D作DN⊥OA于N,则此时PA+PC的值最小.∵DP=PA,∴PA+PC=PD+PC=CD.∵B(1,),∴AB=,OA=1,∠B=60°.由勾股定理得:OB=2.由三角形面积公式得:×OA×AB=×OB×AM,∴AM=.∴AD=2×=1.∵∠AMB=90°,∠B=60°,∴∠BAM=10°.∵∠BAO=90°,∴∠OAM=60°.∵DN⊥OA,∴∠NDA=10°.∴AN=AD=.由勾股定理得:DN=.∵C(1,0),∴CN=1-1-.在Rt△DNC中,由勾股定理得:DC=.∴PA+PC的最小值是.14、3【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得,a+b=10,b-1=1,计算出a、b的值,然后代入可得的值.【题目详解】解:∵点P(﹣10,1)关于y轴对称点Q(a+b,b﹣1),∴a+b=10,b﹣1=1,解得:a=8,b=2,则=+=2+=3,故答案为:3.【题目点拨】此题主要考查关于y轴对称点的坐标特点以及二次根式的加法运算,关键是掌握关于y轴对称点的坐标特点,即关于y轴对称的两点:横坐标互为相反数,纵坐标不变.15、23.1【分析】根据中位数的定义分析,即可得到答案.【题目详解】鞋的销售量总共12双,鞋的尺码从小到大排列后中间两个数为:23,24∴中位数为:23.1故答案为:23.1.【题目点拨】本题考查了中位数的知识,解题的关键是熟练掌握中位数的定义,从而完成求解.16、1【解题分析】本题可结合平均数的定义先算出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数.【题目详解】数据﹣3,﹣2,0,1,x,6,9,12的平均数为3,即有(﹣3﹣2+0+1+x+6+9+12)=3,解得:x=1.将这组数据从小到大重新排列后为﹣3,﹣2,0,1,1,6,9,12;这组数据的中位数是=1.故答案为:1.【题目点拨】本题考查的是中位数和平均数的定义.平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.中位数把样本数据分成了相同数目的两部分.17、【分析】连接AM,在Rt△ADM中,利用勾股定理求出AD2,再在Rt△ADC中,利用勾股定理求出AC即可.【题目详解】解:如图,连接AM.∵直线MN垂直平分AC,∴MA=MC=3,∵四边形ABCD是矩形,∴∠D=90°,∵DM=2,MA=3,∴AD2=AM2﹣DM2=32﹣22=5,∴AC=,故答案为:.【题目点拨】本题考查线段垂直平分线的性质,矩形的性质、勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.18、260°.【分析】利用三角形的外角等于不相邻的两个内角之和以及等量代换进行解题即可【题目详解】解:如图:∠1=∠B+∠C,∠DME=∠A+∠E,∠ANF=∠F+∠D,∵∠1=∠DME+∠ANF=130°,∴∠A+∠B+∠C+∠D+∠E+∠F=2×130°=260°.故答案为260°.【题目点拨】本题主要考查三角形的外角性质,关键在于能够把所有的外角关系都找到三、解答题(共78分)19、(1);(2)x=1.【分析】(1)原式括号中两项通分并利用同分母分式的减法法则计算,利用除法法则变形,约分即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【题目详解】(1)原式=[=•=;(2)方程两边乘(x+2)(x﹣1),得x(x﹣1)﹣(x+2)(x﹣1)=x+2,整理得:x2﹣x﹣(x2+x﹣2)=x+2解得,x=1,检验:当x=1时,(x+2)(x﹣1)≠1,所以,原分式方程的解为x=1.【题目点拨】此题考查了解分式方程,以及分式的混合运算,熟练掌握运算法则是解本题的关键.20、(1)每吨水的政府补贴优惠价和市场指导价分别是2元、3.5元;(2);(3)69.5【分析】(1)根据题意列出方程组,求解此方程组即可;(2)根据用水量分别求出在两个不同的范围内y与x之间的函数关系,注意自变量的取值范围;(3)根据小明家的用水量判断其在哪个范围内,代入相应的函数关系式求值即可.【题目详解】解:(1)由题可得,解得:,∴每吨水的政府补贴优惠价和市场指导价分别是2元、3.5元;(2)①当时,,②当时,,综上:;(3)∵,∴答:他家应交水费69.5元.【题目点拨】本题考查了二元一次方程组的应用及一次函数的应用,明确题意正确找出数量关系是解题关键,同时在求一次函数表达式时,此函数是一个分段函数,注意自变量的取值范围.21、【解题分析】试题分析:原式可以化为,当时,原式考点:完全平方公式、平方差公式的计算点评:本题考查的是完全平方公式、平方差公式的简单运算规律22、(1),;证明过程见解析(2)成立【分析】(1)要证BQ=AP,可以转化为证明,要证明BQ⊥AP,可以证明∠QGA=,只要证出∠CBQ=∠CAP,∠GAQ+∠AQG=即可证出;(2)类比(1)的证明过程,就可以得到结论仍成立.【题目详解】(1)BQ=AP,BQ⊥AP,理由:∵EF=FP,EF⊥FP,∴∠EPF=,又∵AC⊥BC,∴∠CQP=∠CPQ=,∴CQ=CP,在和中,,∴(SAS),∴BQ=AP.如下图,延长BQ交AP与点G,

∵,∴∠CBQ=∠CAP,在Rt△BCQ中,∠CBQ+∠CQB=,又∠CQB=∠AQG,∴∠GAQ+∠AQG=∠CBQ+∠CQB=,∴∠QGA=,∴BQ⊥AP,故BQ=AP,BQ⊥AP.(2)成立;理由:∵,∴,又∵,∴,∴CQ=CP,在和中,,

∴(SAS),∴BQ=AP,延长QB交AP于点N,如下图所示:

则,∵,∴,∵在Rt中,,又∵,∴,∴,∴,故,.【题目点拨】本题考查等腰三角形的性质、全等三角形的性质和判定及三角形的内角和定理等知识,解题的关键是证明三角形全等.23、-2【分析】根据零指数幂的意义以及负整数指数幂的意义,先进行计算,再进行有理数加减的混合运算,即可得到答案.【题目详解】解:原式=(﹣3)2+4×(﹣1)﹣8+1=9﹣4﹣8+1=﹣2【题目点拨】本题考查的是实数的运算,解题的关键是熟记幂的相关知识以及实数的运算法则.24、(1)60;40;15;(2)扇形图中B组所在扇形的圆心角度数为36°;(3)持有D组观点的市民人数大约为20万人.【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论