版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广西南宁市江南区维罗中学八年级数学第一学期期末教学质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图①是一直角三角形纸片,∠A=30°,BC=4cm,将其折叠,使点C落在斜边上的点C′处,折痕为BD,如图②,再将图②沿DE折叠,使点A落在DC′的延长线上的点A′处,如图③,则折痕DE的长为()A.cm B.cm C.cm D.3cm2.如图,AF∥CD,BC平分∠ACD,BD平分∠EBF,且BC⊥BD,下列结论:①BC平分∠ABE;②AC∥BE;③∠BCD+∠D=90°;④∠DBF=2∠ABC.其中正确的个数为()A.1个 B.2个 C.3个 D.4个3.生物学家发现了一种病毒,其长度约为,将数据0.00000032用科学记数法表示正确的是()A. B. C. D.4.如图,的面积为12,,,的垂直平分线分别交,边于点,,若点为边的中点,点为线段上一动点,则周长的最小值为()A.6 B.8 C.10 D.125.如图,根据计算长方形ABCD的面积,可以说明下列哪个等式成立()A. B.C. D.6.英国曼彻斯特大学的两位科学家因为成功地从石墨中分离出石墨烯,荣获了诺贝尔物理学奖.石墨烯目前是世上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.00000000034米,将这个数用科学记数法表示为A. B. C. D.7.如图,在△ABC和△DEF中,AB=DE,∠A=∠D,添加一个条件不能判定这两个三角形全等的是()A.AC=DF B.∠B=∠E C.BC=EF D.∠C=∠F8.下列命题为真命题的是()A.三角形的一个外角大于任何一个和它不相邻的内角B.两直线被第三条直线所截,同位角相等C.垂直于同一直线的两直线互相垂直D.三角形的外角和为9.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A所代表的正方形的面积为()A.4 B.8 C.16 D.6410.若分式的值为正数,则的取值范围是()A. B. C. D.且11.如图,△ABE≌△ACF,若AB=5,AE=2,则EC的长度是()A.2 B.3 C.4 D.512.在△ABC中,若∠B=∠C=2∠A,则∠A的度数为()A.72° B.45° C.36° D.30°二、填空题(每题4分,共24分)13.命题“等腰三角形两底角相等”的逆命题是_______14.已知,则的值为__________.15.比较大小:58_____5-12.16.分解因式:x2﹣7x+12=________.17.要想在墙上固定一根木条,至少要钉_________根钉子.18.A、B、C三地在同一直线上,甲、乙两车分别从A,B两地相向匀速行驶,甲车先出发2小时,甲车到达B地后立即调头,并将速度提高10%后与乙车同向行驶,乙车到达A地后,继续保持原速向远离B的方向行驶,经过一段时间后两车同时到达C地,设两车之间的距离为y(千米),甲行驶的时间x(小时).y与x的关系如图所示,则B、C两地相距_____千米.三、解答题(共78分)19.(8分)如图,在四边形ABCD中,,AE交BC于点P,交DC的延长线于点E,点P为AE的中点.(1)求证:点P也是BC的中点.(2)若,且,求AP的长.(3)在(2)的条件下,若线段AE上有一点Q,使得是等腰三角形,求的长.20.(8分)如图2,在中,,AC=BC,,,垂足分别为D,E.(2)若AD=2.5cm,DE=2.7cm,求BE的长.(2)如图2,在原题其他条件不变的前提下,将CE所在直线旋转到ABC的外部,请你猜想AD,DE,BE三者之间的数量关系,直接写出结论:________.(不需证明)(3)如图3,若将原题中的条件改为:“在ABC中,AC=BC,D,C,E三点在同一条直线上,并且有,其中为任意钝角”,那么(2)中你的猜想是否还成立?若成立,请予以证明;若不成立,请说明理由.21.(8分)已知一次函数,它的图像经过,两点.(1)求与之间的函数关系式;(2)若点在这个函数图像上,求的值.22.(10分)某班将举行“数学知识竞赛”活动,班长安排小明购买奖品,下面两图是小明买回奖品时与班长的对话情境:请根据上面的信息,解决问题:(1)试计算两种笔记本各买了多少本?(2)请你解释:小明为什么不可能找回68元?23.(10分)在方格纸中的位置如图1所示,方格纸中的每个小正方形的边长为1个单位长度.(1)图1中线段的长是___________;请判断的形状,并说明理由.(2)请在图2中画出,使,,三边的长分别为,,.(3)如图3,以图1中的,为边作正方形和正方形,连接,求的面积.24.(10分)计算(每小题4分,共16分)(1)(2)已知.求代数式的值.(1)先化简,再求值,其中.(4)解分式方程:+1.25.(12分)如图是由边长为的小正方形构成的网格,每个小正方形的顶点叫做格点,的顶点在格点.请选择适当的格点用无刻度的直尺在网格中完成下列画图,保留连线的痕迹,不要求说明理由.(1)如图,作关于直线的对称图形;(2)如图,作的高;(3)如图,作的中线;(4)如图,在直线上作出一条长度为个单位长度的线段在的上方,使的值最小.26.结论:直角三角形中,的锐角所对的直角边等于斜边的一半.如图①,我们用几何语言表示如下:∵在中,,,∴.你可以利用以上这一结论解决以下问题:如图②,在中,,,,,(1)求的面积;(2)如图③,射线平分,点从点出发,以每秒1个单位的速度沿着射线的方向运动,过点分别作于,于,于.设点的运动时间为秒,当时,求的值.
参考答案一、选择题(每题4分,共48分)1、A【解题分析】因为在直角三角形中,∠A=30°,BC=4,故∠CBA=60°,根据折叠的性质得:故得:DB=,,根据折叠的性质得:,故△EDB为直角三角形,又因为,故DE=DBtan30°=cm,故答案选A.2、C【解题分析】分析:根据平行线的性质、角平分线的定义、余角的定义作答.详解:①∵BC⊥BD,∴∠DBE+∠CBE=90°,∠ABC+∠DBF=90°,又∵BD平分∠EBF,∴∠DBE=∠DBF,∴∠ABC=∠CBE,即BC平分∠ABE,正确;②由AB∥CE,BC平分∠ABE、∠ACE易证∠ACB=∠CBE,∴AC∥BE正确;③∵BC⊥AD,∴∠BCD+∠D=90°正确;④无法证明∠DBF=60°,故错误.故选C.点睛:此题难度中等,需灵活应用平行线的性质、角平分线的定义、余角的定义等知识点.3、B【解题分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】0.00000032=3.2×10-1.故选:B.【题目点拨】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4、B【分析】先根据中点的定义求出CD,然后可知的周长=PC+PD+CD,其中CD为定长,从而得出PC+PD最小时,的周长最小,连接AD交EF于点P,根据垂直平分线的性质可得此时PC+PD=PA+PD=AD,根据两点之间线段最短可得AD即为PC+PD的最小值,然后根据三线合一和三角形的面积公式即可求出AD,从而求出结论.【题目详解】解:∵,点为边的中点∴CD=∵的周长=PC+PD+CD,其中CD为定长∴PC+PD最小时,的周长最小连接AD交EF于点P,如下图所示∵EF垂直平分AC∴PA=PC∴此时PC+PD=PA+PD=AD,根据两点之间线段最短,AD即为PC+PD的最小值∵,点D为BC的中点∴AD⊥BC∴,即解得:AD=6∴此时的周长=PC+PD+CD=AD+CD=1即周长的最小值为1.故选B.【题目点拨】此题考查的是求三角形周长的最小值、垂直平分线的性质和等腰三角形的性质、掌握两点之间线段最短、垂直平分线的性质和三线合一是解决此题的关键.5、D【题目详解】长方形ABCD的面积的两种表示方法可得,故选D.6、C【解题分析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).0.00000000034第一个有效数字前有10个0(含小数点前的1个0),从而.故选C.7、C【分析】根据三角形全等的判定定理等知识点进行选择判断.【题目详解】A、添加AC=DF,可利用三角形全等的判定定理判定△ABC≌△DEF,故此选项不合题意;B、添加∠B=∠E,可利用三角形全等的判定定理判定△ABC≌△DEF,故此选项不合题意;C、添加BC=EF,不能判定△ABC≌△DEF,故此选项符合题意;D、添加∠C=∠F,可利用三角形全等的判定定理判定△ABC≌△DEF,故此选项不合题意;故选C.【题目点拨】本题主要考查你对三角形全等的判定等考点的理解.8、A【解题分析】根据三角形的外角性质、平行线的性质、平行公理的推论、三角形外角和定理判断即可.【题目详解】三角形的一个外角大于任何一个和它不相邻的内角,A是真命题;两条平行线被第三条直线所截,同位角相等,B是假命题;在同一平面内,垂直于同一直线的两直线互相平行,C是假命题;三角形的外角和为360°,D是假命题;故选A.【题目点拨】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.9、D【分析】根据正方形的面积等于边长的平方,由正方形PQED的面积和正方形PRQF的面积分别表示出PR2及PQ2,又三角形PQR为直角三角形,根据勾股定理求出QR2,即为所求正方形的面积.【题目详解】解:∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又∵△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2﹣PQ2=289﹣225=1,则正方形QMNR的面积为1.故选:D.【题目点拨】此题考查了勾股定理,以及正方形的面积公式.勾股定理最大的贡献就是沟通“数”与“形”的关系,它的验证和利用都体现了数形结合的思想,即把图形的性质问题转化为数量关系的问题来解决.能否由实际的问题,联想到用勾股定理的知识来求解是本题的关键.10、D【分析】若的值是正数,只有在分子分母同号下才能成立,即x+4>1,且x≠1,因而能求出x的取值范围.【题目详解】∵x≠1,∴.∵1,∴x+4>1,x≠1,∴x>﹣4且x≠1.故选:D.【题目点拨】本题考查了分式值的正负性问题,若对于分式(b≠1)>1时,说明分子分母同号;分式(b≠1)<1时,分子分母异号,注意此题中的x≠1.11、B【分析】根据△ABE≌△ACF,可得三角形对应边相等,由EC=AC-AE即可求得答案.【题目详解】解:∵△ABE≌△ACF,AB=5,AE=2,∴AB=AC=5,∴EC=AC-AE=5-2=3,故选:B.【题目点拨】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键.12、C【解题分析】试题分析:根据三角形的内角和可知∠A+∠B+∠C=180°,即5∠A=180°,解得∠A=36°.故选C考点:三角形的内角和二、填空题(每题4分,共24分)13、有两个角相等的三角形是等腰三角形【分析】根据逆命题的条件和结论分别是原命题的结论和条件写出即可.【题目详解】∵原命题的题设是:“一个三角形是等腰三角形”,结论是“这个三角形两底角相等”,∴命题“等腰三角形的两个底角相等”的逆命题是“有两个角相等三角形是等腰三角形”.故答案为:有两个角相等的三角形是等腰三角形.【题目点拨】本题考查命题与逆命题,对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.14、﹣1【分析】等式左边根据多项式的乘法法则计算,合并后对比两边系数即得答案.【题目详解】解:∵,,∴,∴m=﹣1.故答案为:﹣1.【题目点拨】本题考查了多项式乘多项式的运算法则,属于基础题型,熟练掌握多项式乘法的运算法则是解题关键.15、>【解题分析】利用作差法即可比较出大小.【题目详解】解:∵58∴58>5故答案为>.16、(x-4)(x-3)【分析】因为(-3)×(-4)=12,(-3)+(-4)=-7,所以利用十字相乘法分解因式即可.【题目详解】解:x2-7x+12=(x-3)(x-4).
故答案为:(x-3)(x-4).【题目点拨】本题考查十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.17、两【分析】根据两点确定一条直线即可解答本题.【题目详解】解:因为两点确定一条直线,所以固定一根木条,至少要钉两根钉子;故答案为:两.【题目点拨】本题考查的是固定知识点,两点确定一条直线.18、1.【分析】根据题意和函数图象中的数据,可以求得甲乙两车的速度,再根据“路程=速度×时间”,即可解答本题.【题目详解】解:设甲车的速度为a千米/小时,乙车的速度为b千米/小时,,解得,∴A、B两地的距离为:80×9=720千米,设乙车从B地到C地用的时间为x小时,60x=80(1+10%)(x+2﹣9),解得,x=22,则B、C两地相距:60×22=1(千米)故答案为:1.【题目点拨】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.三、解答题(共78分)19、(1)证明见详解;(2)5;(3)4或或.【分析】(1)由,得∠B=∠ECP,由点P为AE的中点,得AP=EP,根据AAS可证∆CEP≅∆BAP,进而得到结论;(2)在Rt∆DCP中,利用勾股定理,可得CP的长,即BP的长,从而在Rt∆ABP中,利用勾股定理,即可求解;(3)若是等腰三角形,分3种情况讨论:①当AQ=AB时,②当BQ=AB时,③当AQ=BQ时,分别根据等腰三角形的性质和勾股定理求出AQ的值即可.【题目详解】(1)∵,∴∠B=∠ECP,∵点P为AE的中点,∴AP=EP,在∆CEP和∆BAP中,∵(对顶角相等)∴∆CEP≅∆BAP(AAS)∴BP=CP,∴点P也是BC的中点;(2)∵,∴,∴,∴BP=CP=3,∴在Rt∆ABP中,(3)若是等腰三角形,分3种情况讨论:①当AQ=AB时,如图1,∵AB=4,∴AQ=4;②当BQ=AB时,如图2,过段B作BM⊥AE于点M,∵在Rt∆ABP中,AB=4,BP=3,AP=5,∴BM=,∵在Rt∆ABM中,,∴,∵BQ=AB,BM⊥AE,∴MQ=AM=,∴AQ=2×=,③当AQ=BQ时,∴∠QAB=∠QBA,∵,∴∠QAB+∠QPB=90°,∠QBA+∠QBP=90°,∴∠QPB=∠QBP,∴BQ=PQ,∴AQ=BQ=PQ=AP=×5=;综上所述,AQ的长为:4或或.【题目点拨】本题主要考查全等三角形的判定和性质,等腰三角形的判定和性质以及勾股定理,根据题意,分别画出图形,熟练运用等腰三角形的性质,是解题的关键.20、(2)BE=3.8cm;(2)AD+BE=DE;(3)成立,证明详见解析.【分析】(2)利用垂直的定义及同角的余角相等,可证得∠EBC=∠DCA,利用AAS可证得△CEB≌△ADC,再利用全等三角形的对应边相等,可证得BE=CD,CE=AD,从而可求出DC的长,即可得到BE的长.(2)利用垂直的定义及同角的余角相等,可证得∠EBC=∠DCA,利用AAS可证得△CEB≌△ADC,再利用全等三角形的对应边相等,可证得BE=CD,CE=AD,然后根据DE=CE+DE,即可证得结论.(3)利用同样的方法,可证得BE=CD,CE=AD,然后根据DE=EC+CD,即可得到DE,AD,BE之间的数量关系.【题目详解】(2)解:∵,,∴,∴.∵,∴.在和中,,,∵DC=CE-DE,DE=2.7cm,∴BE=3.8cm(2)AD+BE=DE,(不需证明)理由如下:证明:∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=93°,∴∠EBC+∠BCE=93°.∵∠BCE+∠ACD=93°,∴∠EBC=∠DCA.在△CEB和△ADC中,,∴△CEB≌△ADC(AAS),∴BE=DC,CE=AD,∴DE=CE+DE=AD+BE(3)(2)中的猜想还成立,证明:∵,,,∴在和中,,,∴,,∴【题目点拨】本题考查了三角形全等的判定和性质,掌握全等三角形的判定方法是解题的关键.21、(1);(2).【分析】(1)利用待定系数法容易求出一次函数的解析式;(2)将点代入一次函数解析式,容易求出的值.【题目详解】解:(1).将,两点分别代入一次函数可得:,解得..(2).将点代入一次函数解析式.,故.【题目点拨】本题考查了利用待定系数法求一次函数的解析式,以及利用一次函数解析式求点的坐标,灵活掌握待定系数法列方程以及解方程是解题关键.22、(1)5元笔记本买了25本,8元笔记本买了15本(2)不可能找回68元,理由见解析.【解题分析】(1)设5元、8元的笔记本分别买本,本,依题意,得:,解得:.答:5元和8元笔记本分别买了25本和15本.(2)设买本5元的笔记本,则买本8元的笔记本.依题意,得:,解得.因是正整数,所以不合题意,应舍去,故不能找回68元.【题目点拨】本题难度较低,主要考查学生对二元一次方程组解决实际应用的能力。为中考常考题型,要求学生牢固掌握。23、(1)AB=,△ABC为直角三角形;(2)见解析;(3)5【分析】(1)根据勾股定理求出AB、BC、AC的长,即可判断△ABC的形状;(2)根据点D的位置和三边的长度,利用勾股定理找到格点画图图形;(3)由题意可知△RAD为直角三角形,直角边的长度分别为AB,AC的长,即可算出的面积.【题目详解】解:(1)AB=,△ABC为直角三角形,理由是:AB==,AC==,BC=5,∵,∴△ABC为直角三角形;(2)如图,即为所画三角形:(3)∵∠BAC=90°,∠BAR=∠CAD=90°,∴∠RAD=90°,∵AR=AB=,AD=AC=,∴=5.【题目点拨】此题主要考查了勾股定理以及三角形面积求法,利用勾股定理求出各边长是解题关键.24、(1)1;(2)7;(1);(4)【分析】(1)根据幂的乘方、平方差公式、去绝对值解决即可.(2)根据整式乘法法则,将原式变形成2a2+1a+1,再将变形成2a2+1a=6,代入计算即可.(1)根据分式的基本性质,先将原式化简成,将m的值代入计算即可.(4)根据等式和分式的基本性质,将分式方程化简成整式方程求解即可.【题目详解】(1),;,,=1.(2)解:原式=6a2+1a-(4a2-1)=6a2+1a-4a2+1=2a2+1a+1∵2a2+1a-6=02a2+1a=6原式=6+1=7(1)(4)方程两边都乘以得:解得:检验:当时,2(x﹣1)≠0,所以是原方程的解,即原方程的解为.【题目点拨】本题考查了幂的乘方、平方差公式、整式运算法则、分式的化简求值及解分式方程,解决本题的关键是熟练掌握整式和分式的运算法则,等式的基本性质.25、(1)图见解析;(2)图见解析;(3)图见解析;(4)图见解析【分析】(1)分别找到A、B、C关于直线l的对称点,连接、、即可;(2)如解图2,连接CH,交AB于点D,利用SAS证出△ACB≌△CGH,从而得出∠BAC=∠HCG,然后利用等量代换即可求出∠CDB=90°;(3)如解图3,连接CP交AB于点E,利用矩形的性质可得AE=BE;(4)如解图4,找出点A关于l的对称点A1,设点A1正下方的格点为C,连接CB,交直线l于点N,设点B正上方的格点为D,连接A1D,交直线l于点M,连接A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 上海科创职业技术学院《网页制作与设计》2023-2024学年第一学期期末试卷
- 上海交通大学《地球表层系统科学》2023-2024学年第一学期期末试卷
- 上海建设管理职业技术学院《设计基础造型》2023-2024学年第一学期期末试卷
- 教室考核情况报告范文
- 上海海事大学《新能源汽车性能仿真技术》2023-2024学年第一学期期末试卷
- 上海海关学院《运输与保险》2023-2024学年第一学期期末试卷
- 上海行健职业学院《编译原理》2023-2024学年第一学期期末试卷
- 2024年中国大口径中空缠绕管生产线市场调查研究报告
- Unit 5 Signs(教学实录)-2024-2025学年译林版(三起)英语六年级上册
- 冬季常见病的保健调理
- 山东2023泰安银行春季校园招聘25人上岸提分题库3套【500题带答案含详解】
- 山东省政府采购专家复审考试题库
- 《“歪脑袋”木头桩》阅读测试
- GB/T 3246.2-2000变形铝及铝合金制品低倍组织检验方法
- 主要农作物(粮食作物)课件
- 百词斩-定语从句课件-(;)
- 新旧公司法对照表
- 三年级上册英语课件-Unit3 Look at me-人教(PEP) (6)(共30张PPT)
- 西方音乐史课程大纲
- 2022-《参与感:小米口碑营销内部手册》
- 三级医院医疗设备配置标准
评论
0/150
提交评论