版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省常州市武进区奔牛初级中学2024届八年级数学第一学期期末学业质量监测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.下列命题中,是真命题的是()①两条直线被第三条直线所截,同位角相等;②在同一平面内,垂直于同一直线的两条直线互相平行③三角形的三条高中,必有一条在三角形的内部④三角形的三个外角一定都是锐角A.①② B.②③ C.①③ D.③④2.若式子在实数范围内有意义,则x的取值范围是()A.x≥ B.x> C.x≥ D.x>3.已知一组数据3,a,4,5的众数为4,则这组数据的平均数为()A.3 B.4 C.5 D.64.若多项式能用完全平方公式进行因式分解,则值为()A.2 B. C. D.5.等腰三角形的一个外角为80°,则它的底角为()A.100° B.80° C.40° D.100°或40°6.已知在四边形ABCD中,,,M,N分别是AD,BC的中点,则线段MN的取值范围是()A. B. C. D.7.下列运算正确的是A. B. C. D.8.以二元一次方程组的解为坐标的点在平面直角坐标系的()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.如图所示,在中,是边上的中线,,,,则的值为()A.3 B.4 C.5 D.610.如图,在△ACB中,有一点P在AC上移动,若AB=AC=5,BC=6,则AP+BP+CP的最小值为()A.9.6 B.9.8 C.11 D.10.2二、填空题(每小题3分,共24分)11.如图,在直角坐标系中有两条直线,l1:y=x+1和L2:y=ax+b,这两条直线交于轴上的点(0,1)那么方程组的解是_____.12.如图,在△ABC中,∠ABC=∠ACB,AB的垂直平分线交AC于点M,交AB于点N.连接MB,若AB=8,△MBC的周长是14,则BC的长为____.13.若x+y=5,xy=6,则x2+y2+2006的值是_____.14.已知点P(a,b)在一次函数y=2x﹣1的图象上,则4a﹣2b+1=_____.15.照相机的三脚架的设计依据是三角形具有_____.16.如果,那么值是_____.17.已知,,则__________18.一个等腰三角形的两边长分别为5或6,则这个等腰三角形的周长是.三、解答题(共66分)19.(10分)如图,过点的两条直线,分别交轴于点,,其中点在原点上方,点在原点下方,已知.(1)求点的坐标;(2)若的面积为9,求直线的解析式.20.(6分)如图,在中,,点是边上一点(不与重合),以为边在的右侧作,使,,连接,设,.(1)求证:;(2)探究:当点在边上移动时,之间有怎样的数量关系?请说明理由.21.(6分)学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表借阅图书的次数0次1次2次3次4次及以上人数713a103请你根据统计图表中的信息,解答下列问题:______,______.该调查统计数据的中位数是______,众数是______.请计算扇形统计图中“3次”所对应扇形的圆心角的度数;若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.22.(8分)学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地两人之间的距离y(米)与时间t(分钟)之间的函数关系如图所示(1)根据图象信息,当t=分钟时甲乙两人相遇,甲的速度为米/分钟;(2)求出线段AB所表示的函数表达式(3)甲、乙两人何时相距400米?23.(8分)教材呈现:下图是华师版八年级上册数学教材第94页的部分内容.1.线段垂直平分线我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴,如图,直线是线段的垂直平分线,是上任一点,连结.将线段沿直线对折,我们发现与完全重合.由此即有:线段垂直平分线的性质定理线段垂直平分线上的点到线段两端的距离相等.已知:如图,垂足为点,点是直线上的任意一点.求证:.分析图中有两个直角三角形和,只要证明这两个三角形全等,便可证得.定理证明:请根据教材中的分析,结合图①,写出“线段垂直平分线的性质定理”完整的证明过程.定理应用:(1)如图②,在中,直线分别是边的垂直平分线,直线m、n交于点,过点作于点.求证:.(1)如图③,在中,,边的垂直平分线交于点,边的垂直平分线交于点.若,则的长为__________.24.(8分)化简:2x2+(﹣2x+3y)(﹣2x﹣3y)﹣(x﹣3y)2,其中x=﹣2,y=﹣1.25.(10分)已知:如图,,(1)求证:.(2)求的长.26.(10分)一天老王骑摩托车外出旅游,刚开始行驶时,油箱中有油9,行驶了2后发现油箱中的剩余油量6.(1)求油箱中的剩余油量()与行驶的时间()之间的函数关系式.(2)如果摩托车以50的速度匀速行驶,当耗油6时,老王行驶了多少千米?
参考答案一、选择题(每小题3分,共30分)1、B【解题分析】两条平行直线被第三条直线所截,同位角相等,所以①错误;在同一平面内,垂直于同一直线的两条直线互相平行,所以②正确;三角形的三条高中,必有一条在三角形的内部,所以③正确;三角形的三个外角最多只有一个锐角,所以④错误.故选B.2、A【分析】二次根式有意义的条件:二次根号下的数为非负数,二次根式才有意义.【题目详解】解:由题意得,,故选A.【题目点拨】本题考查二次根式有意义的条件,本题属于基础应用题,只需学生熟练掌握二次根式有意义的条件,即可完成.3、B【解题分析】试题分析:要求平均数只要求出数据之和再除以总的个数即可;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.依此先求出a,再求这组数据的平均数.数据3,a,1,5的众数为1,即1次数最多;即a=1.则其平均数为(3+1+1+5)÷1=1.故选B.考点:1.算术平均数;2.众数.4、C【分析】利用完全平方公式的结构特征判断即可确定出a的值.【题目详解】∵多项式x1+1ax+4能用完全平方公式进行因式分解,
∴1a=±4,
解得:a=±1.
故选:C.【题目点拨】此题考查因式分解-运用公式法,熟练掌握完全平方公式是解题的关键.5、C【解题分析】试题分析:根据三角形的外角性质和等腰三角形的性质求解.解:∵等腰三角形的一个外角为80°∴相邻角为180°﹣80°=100°∵三角形的底角不能为钝角∴100°角为顶角∴底角为:(180°﹣100°)÷2=40°.故选C.考点:等腰三角形的性质.6、B【分析】利用中位线定理作出辅助线,利用三边关系可得MN的取值范围.【题目详解】连接BD,过M作MG∥AB,连接NG.∵M是边AD的中点,AB=3,MG∥AB,∴MG是△ABD的中位线,BG=GD,;∵N是BC的中点,BG=GD,CD=5,∴NG是△BCD的中位线,,在△MNG中,由三角形三边关系可知NG-MG<MN<MG+NG,即,∴,当MN=MG+NG,即MN=1时,四边形ABCD是梯形,故线段MN长的取值范围是1<MN≤1.故选B.【题目点拨】解答此题的关键是根据题意作出辅助线,利用三角形中位线定理及三角形三边关系解答.7、A【解题分析】选项A,选项B,,错误;选项C,,错误;选项D,,错误.故选A.8、A【分析】求出方程组的解,即可作出判断.【题目详解】①+②得:2y=8,解得:y=4,把y=4代入②得:x=3,则(3,4)在第一象限,故选:A.【题目点拨】此题考查了二元一次方程组的解,以及点的坐标,熟练掌握运算法则是解本题的关键.9、B【分析】首先过点A作AE⊥BC,交CB的延长线于E,由AE⊥BC,DB⊥BC,得出AE∥BD,由中位线的性质得出BC=BE,然后由∠ABC=120°,得出∠ABE=60°,∠BAE=30°,AB=2BE=2BC,即可得解.【题目详解】过点A作AE⊥BC,交CB的延长线于E,如图所示:∵AE⊥BC,DB⊥BC,∴AE∥BD,∵AD=CD,∴BD是△ACE的中位线,∴BC=BE,∵∠ABC=120°,∴∠ABE=60°,∴∠BAE=30°,∴AB=2BE=2BC,∵∴BC=4故答案为B.【题目点拨】此题主要考查平行线的判定与性质以及中位线的性质、特殊直角三角形的性质,熟练掌握,即可解题.10、B【分析】过点A作AD⊥BC于D,根据题意可得当BP最小时,AP+BP+CP最小,然后根据垂线段最短可得当BP⊥AC时,BP最小,然后根据三线合一和勾股定理即可求出BD和AD,然后根据S△ABC=BC·AD=AC·BP即可求出此时的BP,从而求出结论.【题目详解】解:过点A作AD⊥BC于D∵AP+CP=AC=5∴AP+BP+CP=5+BP,即当BP最小时,AP+BP+CP最小,根据垂线段最短,当BP⊥AC时,BP最小∵AB=AC=5,BC=6,∴BD=BC=3根据勾股定理AD==4此时S△ABC=BC·AD=AC·BP∴×6×4=×5·BP解得:BP=∴AP+BP+CP的最小值为+5=故选B.【题目点拨】此题考查的是垂线段最短的应用、等腰三角形的性质、勾股定理和三角形的面积公式,掌握垂线段最短、三线合一、勾股定理和三角形的面积公式是解决此题的关键.二、填空题(每小题3分,共24分)11、.【分析】根据两条直线交于轴上的点(0,1),于是得到结论.【题目详解】∵l1:y=x+1和l2:y=ax+b,这两条直线交于轴上的点(0,1),∴方程组的解是,故答案为:.【题目点拨】本题考查了解方程组的问题,掌握解方程组的方法是解题的关键.12、1【解题分析】根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AM=BM,然后求出△MBC的周长=AC+BC,再代入数据进行计算即可得解.【题目详解】∵M、N是AB的垂直平分线∴AM=BM,∴△MBC的周长=BM+CM+BC=AM+CM+BC=AC+BC,∵AB=8,△MBC的周长是14,∴BC=14-8=1.故答案为:1.【题目点拨】线段垂直平分线的性质,等腰三角形的性质.13、1【分析】根据x+y=5,xy=6,利用完全平方公式将题目中的式子变形即可求得所求式子的值.【题目详解】解:∵x+y=5,xy=6,∴x2+y2+2006=(x+y)2−2xy+2006=52−2×6+2006=25−12+2006=1,故答案为:1.【题目点拨】本题考查了完全平方公式,利用完全平方公式将题目中的式子变形是解题的关键.14、1【分析】直接把点P(a,b)代入一次函数y=2x﹣1,可求b=2a﹣1,即可求4a﹣2b+1=1.【题目详解】解:∵点P(a,b)在一次函数y=2x﹣1的图象上,∴b=2a﹣1∴4a﹣2b+1=4a﹣2(2a﹣1)+1=1故答案为1【题目点拨】本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.15、稳定性.【分析】根据三角形具有稳定性解答.【题目详解】解:照相机的三脚架的设计依据是三角形具有三角形的稳定性,故答案为:稳定性.【题目点拨】本题主要考查三角形的稳定性,掌握三角形稳定性的应用是解题的关键.16、1【分析】首先根据二次根式有意义的条件求出x,y的值,然后代入即可求出答案.【题目详解】根据二次根式有意义的条件可知解得∴故答案为:1.【题目点拨】本题主要考查代数式求值,掌握二次根式有意义的条件,求出相应的x,y的值是解题的关键.17、5【分析】由题意根据同底数幂的除法,进行分析计算即可.【题目详解】解:∵,,∴.故答案为:5.【题目点拨】本题考查同底数幂的除法,熟练掌握同底数幂的除法法则即同底数幂相除指数相减是解题的关键.18、16或1.【解题分析】由于未说明两边哪个是腰哪个是底,故需分两种情况讨论:(1)当等腰三角形的腰为5,底为6时,周长为5+5+6=16;(2)当等腰三角形的腰为6,底为5时,周长为5+6+6=1.∴这个等腰三角形的周长是16或1.三、解答题(共66分)19、(1)点的坐标为;(2)【分析】(1)先根据勾股定理求得BO的长,再写出点B的坐标;(2)先根据△ABC的面积为9,求得CO的长,再根据点A、C的坐标,运用待定系数法求得直线的解析式.【题目详解】(1)∵点,,又∵,∴,∴点的坐标为,(2)∵的面积为9,∴,∴,即.∵,∴,∴,设的解析式为(),则,,解得,∴解析式为;【题目点拨】本题主要考查了勾股定理,待定系数法求解析式,掌握勾股定理,待定系数法求解析式是解题的关键.20、(1)见解析;(2),理由见解析【分析】(1)由,得,进而根据SAS证明;(2)由,得,根据三角形内角和定理,即可得到结论.【题目详解】(1)∵,∴,∴,∵,∴(2)∵,∴∵∴∴∴,∵在中,∴.【题目点拨】本题主要考查三角形全等的判定和性质定理,掌握SAS证明三角形全等,是解题的关键.21、17、20;2次、2次;;人.【分析】(1)先由借阅1次的人数及其所占百分比求得总人数,总人数减去其他次数的人数求得a的值,用3次的人数除以总人数求得b的值;(2)根据中位数和众数的定义求解;(3)用360°乘以“3次”对应的百分比即可得;(4)用总人数乘以样本中“4次及以上”的人数所占比例即可得.【题目详解】被调查的总人数为人,,,即,故答案为17、20;由于共有50个数据,其中位数为第25、26个数据的平均数,而第25、26个数据均为2次,所以中位数为2次,出现次数最多的是2次,所以众数为2次,故答案为2次、2次;扇形统计图中“3次”所对应扇形的圆心角的度数为;估计该校学生在一周内借阅图书“4次及以上”的人数为人.【题目点拨】本题考查了统计表、扇形统计图、众数、中位数等,读懂统计图、统计表,从中得到必要的信息是解决问题的关键.注意众数与中位数的求解方法.22、(1)24,40;(2)y=40t(40≤t≤60);(3)出发20分钟或28分钟后,甲、乙两人何时相距400米【分析】(1)根据图象信息,当t=24分钟时甲乙两人相遇,甲60分钟行驶2400米,根据速度=路程÷时间可得甲的速度;(2)由t=24分钟时甲乙两人相遇,可得甲、乙两人的速度和为2400÷24=100米/分钟,减去甲的速度得出乙的速度,再求出乙从图书馆回学校的时间即A点的横坐标,用A点的横坐标乘以甲的速度得出A点的纵坐标,再将A、B两点的坐标代入,利用待定系数法即可求出线段AB所表示的函数表达式;(3)分相遇前后两种情况列方程解答即可.【题目详解】解:(1)根据图象信息,当t=24分钟时甲乙两人相遇,甲的速度为2400÷60=40(米/分钟).故答案为24,40;(2)∵甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,t=24分钟时甲乙两人相遇,∴甲、乙两人的速度和为2400÷24=100米/分钟,∴乙的速度为100﹣40=60(米/分钟).乙从图书馆回学校的时间为2400÷60=40分钟,40×40=1600,∴A点的坐标为(40,1600).设线段AB所表示的函数表达式为y=kt+b,∵A(40,1600),B(60,2400),∴,解得,∴线段AB所表示的函数表达式为y=40t(40≤t≤60);(3)设出发t分钟后两人相距400米,根据题意得(40+60)t=2400﹣400或(40+60)t=2400+400,解得t=20或t=28,答:出发20分钟或28分钟后,甲、乙两人何时相距400米.【题目点拨】本题考查了一次函数的应用,路程、速度、时间的关系,用待定系数法确定函数的解析式,属于中考常考题型.读懂题目信息,从图象中获取有关信息是解题的关键.23、证明见解析;(1)证明见解析;(1)2.【分析】定理证明:根据垂直的定义可得∠PAC=∠PCB=90°,利用SAS可证明△PAC≌△PBC,根据全等三角形的性质即可得出PA=PB;(1)如图,连结,根据垂直平分线的性质可得OB=OC,OA=OC,即可得出OA=OB,根据等腰三角形“三线合一”的性质可得AH=BH;(1)如图,连接BD、BE,根据等腰三角形的性质可得出∠A=∠C=30°,根据垂直平分线的性质可得AD=BD,CE=BE,根据等腰三角形的性质及外角的性质可证明三角形BDE是等边三角形,可得DE=AC,即可得答案.【题目详解】定理证明:,∴∠PAC=∠PCB=90°,,..(1)如图,连结.∵直线m、n分别是边的垂直平分线,..,.(1)如图,连接BD、BE,∵∠ABC=110°,AB=BC,∴∠A=∠
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 房屋家具代购合同模板
- 2024年城市更新项目总承包合同
- 与人合作开店合同模板
- 海南烧烤租赁合同模板
- 手袋采购合同模板
- 商城拆除建筑合同模板
- 农业信息化业务运维技术方案
- 代理品牌转让合同模板
- 油漆出售合同模板
- 应用写作合同模板
- 网络安全防御综合态势感知系统项目可行性分析报告
- 2018年全国统一施工机械台班费用定额
- 螺纹紧固件知识
- 公路工程安全风险辨识与防控手册
- 2023纤维复合材料修复加固边坡支挡结构技术规程
- NET Core 底层入门(完整版)
- 幼儿园消防演练活动总结讲话(5篇)
- 智慧农业智慧水稻项目规划设计方案
- 【设计师】访谈平面设计师
- 摄影摄像构图技法课件
- JGT153-2012 滑道车库门标准
评论
0/150
提交评论