陕西省延安市洛川县2024届数学八上期末经典模拟试题含解析_第1页
陕西省延安市洛川县2024届数学八上期末经典模拟试题含解析_第2页
陕西省延安市洛川县2024届数学八上期末经典模拟试题含解析_第3页
陕西省延安市洛川县2024届数学八上期末经典模拟试题含解析_第4页
陕西省延安市洛川县2024届数学八上期末经典模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陕西省延安市洛川县2024届数学八上期末经典模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.一只船顺流航行90千米与逆流航行60千米所用的时间相等,若水流的速度是2千米/时,求船在静水中的速度.如果设船在静水中的速度为x千米/时,可列出的方程是()A.90x+2=60x-2

B.90x-2=60x+2

2.若等腰三角形的周长为60cm,底边长为xcm,一腰长为ycm,则y关于x的函数解析式及自变量x的取值范围是()A.y=60-2x(0<x<60) B.y=60-2x(0<x<30)C.y=(60-x)(0<x<60) D.y=(60-x)(0<x<30)3.长度为下列三个数据的三条线段,能组成直角三角形的是()A.1,2,3 B.3,5,7 C.1,,3 D.1,,4.下列四个实数中,无理数是()A.3.14 B.﹣π C.0 D.5.如图,中,,,DE是AC边的垂直平分线,则的度数为()A. B. C. D.6.如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D,若PD=3,则点P到边OA的距离是()A.1 B.2 C.3 D.47.如图,直线经过点,则关于的不等式的解集是()A.x>2 B.x<2 C.x≥2 D.x≤28.如图,设点P到原点O的距离为p,将x轴的正半轴绕O点逆时针旋转与OP重合,记旋转角为,规定[p,]表示点P的极坐标,若某点的极坐标为[2,135°],则该点的平面坐标为()

A.() B.() C.() D.()9.下列说法正确的是()A.的平方根是 B.的算术平方根是C.的立方根是 D.是的一个平方根10.如图,在平面直角坐标系中,函数和的图象分别为直线,,过点作轴的垂线交于点,过点作轴的垂线交于点,过点作轴的垂线交于点,过点作轴的垂线交于点,…,依次进行下去,则点的坐标为().A. B.C. D.11.如图,在△ABC中,AB=AC=5,BC=6,点M为BC边中点,MN⊥AC于点N,那么MN等于(

)A. B. C. D.12.一次函数的图象如图所示,将直线向下平移若干个单位后得直线,的函数表达式为.下列说法中错误的是()A. B. C. D.当时,二、填空题(每题4分,共24分)13.若n边形的内角和是它的外角和的2倍,则n=.14.如图,已知△ABC中,∠ABC的平分线与∠ACE的平分线交于点D,若∠A=50°,则∠D=______度.15.如果分式有意义,那么x的取值范围是____________.16.如图7,已知P、Q是△ABC的边BC上的两点,且BP=QC=PQ=AP=AQ,则∠BAC=________17.一副透明的三角板,如图叠放,直角三角板的斜边AB、CE相交于点D,则∠BDC=_____.18.如图,在Rt△ABC中,∠C=90°,∠B=30°,以点A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以M,N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则S△DAC:S△ABC=_____.三、解答题(共78分)19.(8分)如图,在等边中,边长为.点从点出发,沿方向运动,速度为;同时点从点出发,沿方向运动,速度为,当两个点有一个点到达终点时,另一个点随之停止运动.设运动时间为,解答下列问题:(1)当时,_______(用含的代数式表示);(2)当时,求的值,并直接写出此时为什么特殊的三角形?(3)当,且时,求的值.20.(8分)某超市用元购进某种干果销售,由于销售状况良好,超市又调拨元资金购进该种干果,但这次的进价比第一次的进价提高了,购进干果数量是第一次的倍还多千克.该种干果的第一次进价是每千克多少元?如果超市将这种干果全部按每千克元的价格出售,售完这种干果共盈利多少元?21.(8分)已知关于x的一元二次方程(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB、AC的长是方程的两个实数根,第三边BC的长为1.当△ABC是等腰三角形时,求k的值22.(10分)2017年5月,某县突降暴雨,造成山体滑坡,桥梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,已知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1000件帐篷与乙种货车装运800件帐篷所用车辆相等.(1)求甲、乙两种货车每辆车可装多少件帐篷;(2)如果这批帐篷有1490件,用甲、乙两种汽车共16辆装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其余装满,求甲、乙两种货车各有多少辆.23.(10分)如图,等腰三角形中,,,AD为底边BC上的高,动点从点D出发,沿DA方向匀速运动,速度为,运动到点停止,设运动时间为,连接BP.(0≤t≤8)(1)求AD的长;(2)设△APB的面积为y(cm²),求y与t之间的函数关系式;(3)是否存在某一时刻t,使得S△APB:S△ABC=1:3,若存在,求出的值;若不存在,说明理由.(4)是否存在某一时刻,使得点P在线段AB的垂直平分线上,若存在,求出的值;若不存在,说明理由.24.(10分)学生在素质教育基地进行社会实践活动,帮助农民伯伯采摘了黄瓜和茄子共40kg,了解到这些蔬菜的种植成本共42元,还了解到如下信息:黄瓜的种植成本是1元/kg,售价为1.5元/kg;茄子的种植成本是1.2元/kg,售价是2元/kg.(1)请问采摘的黄瓜和茄子各多少千克?(2)这些采摘的黄瓜和茄子可赚多少元?25.(12分)如图,圆柱的底面半径为,圆柱高为,是底面直径,求一只蚂蚁从点出发沿圆柱表面爬行到点的最短路线,小明设计了两条路线:路线1:高线底面直径,如图所示,设长度为.路线2:侧面展开图中的线段,如图所示,设长度为.请按照小明的思路补充下面解题过程:(1)解:;(2)小明对上述结论有些疑惑,于是他把条件改成:“圆柱底面半径为,高为”继续按前面的路线进行计算.(结果保留)①此时,路线1:__________.路线2:_____________.②所以选择哪条路线较短?试说明理由.26.在一次捐款活动中,学校团支书想了解本校学生的捐款情况,随机抽取了50名学生的捐款进行了统计,并绘制成如图所示的统计图.(1)这50名同学捐款的众数为元,中位数为元;(2)如果捐款的学生有300人,估计这次捐款有多少元?

参考答案一、选择题(每题4分,共48分)1、A【解题分析】未知量是速度,有路程,一定是根据时间来列等量关系的.关键描述语是:顺流航行90千米与逆流航行60千米所用的时间相等,等量关系为:顺流航行90千米时间=逆流航行60千米所用的时间.【题目详解】顺流所用的时间为:90x+2;逆流所用的时间为:60x-2.所列方程为:90x+2【题目点拨】本题考查由实际问题抽象出分式方程,解题的关键是读懂题意,得到分式方程.2、D【解题分析】∵2y+x=60,∴y=(60-x)(0<x<30).故选D.3、D【分析】根据勾股定理的逆定理逐项判断即可.【题目详解】由直角三角形的性质知,三边中的最长边为斜边A、,不满足勾股定理的逆定理,此项不符题意B、,不满足勾股定理的逆定理,此项不符题意C、,不满足勾股定理的逆定理,此项不符题意D、,满足勾股定理的逆定理,此项符合题意故选:D.【题目点拨】本题考查了勾股定理的逆定理的应用,熟记勾股定理的逆定理是解题关键.4、B【分析】根据无理数的定义,可得答案.【题目详解】解:3.14,0,,都是有理数;﹣π是无理数.故选:B.【题目点拨】本题考查无理数的定义与形式,理解掌握无理数的定义是关键.5、A【分析】由等腰三角形性质,得到,由DE垂直平分AC,得到AE=CE,则,然后求出.【题目详解】解:∵在中,,,∴,∵DE是AC边的垂直平分线,∴AE=CE,∴,∴;故选择:A.【题目点拨】本题考查了等腰三角形的性质,垂直平分线性质定理,以及三角形内角和定理,解题的关键是掌握所学性质,正确求出.6、C【分析】作PE⊥OA于E,根据角平分线的性质解答.【题目详解】解:作PE⊥OA于E,

∵点P是∠AOB平分线OC上一点,PD⊥OB,PE⊥OA,

∴PE=PD=3,

故选:C.【题目点拨】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.7、D【分析】写出函数图象在x轴上方及x轴上所对应的自变量的范围即可.【题目详解】解:当x≤2时,y≥1.所以关于x的不等式kx+3≥1的解集是x≤2.故选D.【题目点拨】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)1的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.8、B【分析】根据题意可得,,过点P作PA⊥x轴于点A,进而可得∠POA=45°,△POA为等腰直角三角形,进而根据等腰直角三角形的性质可求解.【题目详解】解:由题意可得:,,过点P作PA⊥x轴于点A,如图所示:∴∠PAO=90°,∠POA=45°,∴△POA为等腰直角三角形,∴PA=AO,∴在Rt△PAO中,,即,∴AP=AO=2,∴点,故选B.【题目点拨】本题主要考查平面直角坐标系点的坐标、勾股定理及旋转的性质,熟练掌握平面直角坐标系点的坐标、勾股定理及旋转的性质是解题的关键.9、D【分析】依据平方根,算数平方根,立方根的性质解答即可.【题目详解】解:A.25的平方根有两个,是±5,故A错误;B.负数没有平方根,故B错误;C.0.2是0.008的立方根,故C错误;D.是的一个平方根,故D正确.故选D.【题目点拨】本题主要考查了平方根,算术平方根,立方根的性质.平方根的性质:①正数有两个平方根,它们互为相反数;②0的平方根为0;③负数没有平方根.算术平方根的性质:①正数的算数平方根是正数;②0的算数平方根为0;③负数没有算数平方根.立方根的性质:①任何数都有立方根,且都只有一个立方根;②正数的立方根是正数,负数的立方根是负数,0的立方根是0.10、B【分析】根据一次函数图象上点的坐标特征可得出点A1、A2、A3、A4、A5、A6、A7、A8等的坐标,根据坐标的变化找出变化规律“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数)”,依此规律结合2018=504×4+2即可找出点A2018的坐标.【题目详解】解:当x=1时,y=2,

∴点A1的坐标为(1,2);

当y=-x=2时,x=-2,

∴点A2的坐标为(-2,2);

同理可得:A3(-2,-4),A4(4,-4),A5(4,8),A6(-8,8),A7(-8,-16),A8(16,-16),A9(16,32),…,

∴A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),

A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数).

∵2018=504×4+2,

∴点A2018的坐标为(-2504×2+1,2504×2+1),即(-21009,21009).

故选:B.【题目点拨】本题考查了一次函数图象上点的坐标特征、正比例函数的图象以及规律型中点的坐标,根据坐标的变化找出变化规律是解题的关键.11、C【题目详解】连接AM,如图所示:∵AB=AC=5,点M为BC的中点,∴AM⊥CM,∴AM=,∵AM•MC=AC•MN,∴MN=;故选C.12、B【解题分析】根据两函数图象平行k相同,以及平移规律“左加右减,上加下减”即可判断【题目详解】∵将直线向下平移若干个单位后得直线,∴直线∥直线,∴,∵直线向下平移若干个单位后得直线,∴,∴当时,故选B.【题目点拨】本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.二、填空题(每题4分,共24分)13、6【解题分析】此题涉及多边形内角和和外角和定理多边形内角和=180(n-2),外角和=360º所以,由题意可得180(n-2)=2×360º解得:n=614、25【题目详解】根据三角形的外角的性质可得∠ACE=∠ABC+∠A,∠DCE=∠DBC+∠D,又因为BD,CD是∠ABC的平分线与∠ACE的平分线,所以∠ACE=2∠DCE,∠ABC=2∠DBC,所以∠D=∠DCE-∠DBC=(∠ACE-∠ABC)=∠A=25°.15、x≠1【解题分析】∵分式有意义,∴,即.故答案为.16、120°【解题分析】识记三角形中的角边转换因为PQ=AP=AQ△APQ为等边三角形∠APQ=60°它互补角∠APB=120°BP="AP"△APB为等腰三角形∠PAB=30°同理∠CAQ=30°所以∠BAC=∠CAQ+∠PAB+∠PAQ=30°+30°+60°=120°17、75°.【分析】根据三角板的性质以及三角形内角和定理计算即可.【题目详解】∵∠CEA=60°,∠BAE=45°,∴∠ADE=180°﹣∠CEA﹣∠BAE=75°,∴∠BDC=∠ADE=75°,故答案为75°.【题目点拨】本题考查了三角板的性质,三角形内角和定理等知识,熟练掌握相关的知识是解题的关键.18、1:1【分析】利用10°角所对的直角边是斜边的一半以及三角形的面积公式求出△DAC和△ABC的面积,计算两个面积的比值即可.【题目详解】根据尺规作角平分线的知识可知AD是∠BAC的平分线,又∵∠C=90°,∠B=10°,∴∠CAD=∠BAD=∠B=10°,∴AD=BD,∵在Rt△ACD中,∠CAD=10°,∴CD=AD,∵AD=BD,BD+CD=BC,∴BC=AD,∵S△DAC=×AC×CD=×AC×AD,S△ABC=×AC×BC=×AC×AD,∴S△DAC:S△ABC=1:1,故答案为:1:1.【题目点拨】本题考查了角平分线的性质,作图——基本作图,还有含10°角的直角三角形的性质,解题的关键是掌握作图方法.三、解答题(共78分)19、(1);(2),等边三角形;(1)2或1.【分析】(1)当,可知点P在BA上,所以BP长等于点P运动的总路程减去BC长;(2)若,可证得,用含t的式子表示出AP、AQ,可求出t值,结合平行与等边的性质可知为等边三角形.(1)分类讨论,当时,点可能在边上或在边上,用含t的式子表示出BP的长,可得t值.【题目详解】(1)设点P运动的路程为s,当时,,即,因为,所以点P在BA上,所以;(2)如图为等边三角形,是等边三角形.∴.解得.所以等边三角形.(1)当点在边上时,.∴.当点在边上时,.∴.【题目点拨】本题主要考查了等边三角形中的动点问题,涉及了等边三角形的性质与判定,灵活的用代数式表示线段长是解题的关键.20、(1)该种干果的第一次进价是每千克5元;(2)售完这种干果共盈利6900元.【分析】(1)设该种干果的第一次进价是每千克元,则第二次进价是每千克元,根据第二次购进干果数量是第一次的倍还多千克列方程求出x的值即可;(2)根据销售总额-进货总额即可得答案.【题目详解】(1)设该种干果的第一次进价是每千克元,则第二次进价是每千克元∵第二次购进干果数量是第一次的倍还多千克,∴,解得,经检验是方程的解,答:该种干果的第一次进价是每千克元.(2)=18900-12000(元).答:超市销售这种干果共盈利元.【题目点拨】本题考查分式方程的应用,根据题意,正确得出等量关系是解题关键.21、(5)详见解析(4)或【分析】(5)先计算出△=5,然后根据判别式的意义即可得到结论;(4)先利用公式法求出方程的解为x5=k,x4=k+5,然后分类讨论:AB=k,AC=k+5,当AB=BC或AC=BC时△ABC为等腰三角形,然后求出k的值.【题目详解】解:(5)证明:∵△=(4k+5)4-4(k4+k)=5>0,∴方程有两个不相等的实数根;(4)解:一元二次方程x4-(4k+5)x+k4+k=0的解为x=,即x5=k,x4=k+5,∵k<k+5,∴AB≠AC.当AB=k,AC=k+5,且AB=BC时,△ABC是等腰三角形,则k=5;当AB=k,AC=k+5,且AC=BC时,△ABC是等腰三角形,则k+5=5,解得k=4,所以k的值为5或4.【题目点拨】5.根的判别式;4.解一元二次方程-因式分解法;5.三角形三边关系;4.等腰三角形的性质.22、(1)甲种货车每辆车可装100件帐篷,乙种货车每辆车可装80件帐篷;(2)甲种货车有12辆,乙种货车有1辆.【解题分析】(1)可设甲种货车每辆车可装x件帐蓬,乙种货车每辆车可装y件帐蓬,根据题目中的等量关系“①甲种货车每辆车装的件帐篷数=乙种货车每辆车装的件帐篷数+20;②甲种货车装运1000件帐篷所用车辆=乙种货车装运800件帐蓬所用车辆”,列出方程组求解即可;(2)可设甲种汽车有m辆,乙种汽车有(16﹣m)辆,根据等量关系:甲车装运帐篷数量+乙车装运帐篷数量=这批帐篷总数量1190件,列出方程求解即可.【题目详解】解:(1)设甲种货车每辆车可装x件帐蓬,乙种货车每辆车可装y件帐蓬,依题意有解得经检验,是原方程组的解.故甲种货车每辆车可装100件帐蓬,乙种货车每辆车可装80件帐蓬;(2)设甲种汽车有m辆,乙种汽车有(16﹣m)辆,依题意有100m+80(16﹣m﹣1)+50=1190,解得m=12,16﹣m=16﹣12=1.故甲种汽车有12辆,乙种汽车有1辆.考点:分式方程的应用;二元一次方程组的应用.23、(1)8;(2)y=1﹣3t(0≤t≤8);(3)存在,;(4)存在,【分析】(1)利用等腰三角形的性质以及勾股定理解决问题即可.(2)根据y=S△APB=S△ABD﹣S△PBD,化简计算即可.(3)由题意S△APB:S△ABC=1:3,构建方程即可解决问题.(4)由题意点P在线段AB的垂直平分线上,推出PA=PB,在Rt△PBD中,根据PB2=PD2+BD2,构建方程即可解决问题.【题目详解】(1)∵AB=AC,AD⊥BC,∴BC=DC=6cm,在Rt△ABD中,∵∠ADB=90°,AB=10cm,BD=6cm,∴AD===8(cm).(2)y=S△APB=S△ABD﹣S△PBD=×6×8﹣×6×t=﹣3t+1.∴y=1﹣3t(0≤t≤8).(3)∵S△APB:S△ABC=1:3,∴(1﹣3t):×12×8=1:3,解得t=.∴满足条件的t的值为.(4)由题意点P在线段AB的垂直平分线上,∴PA=PB,在Rt△PBD中,∵PB2=PD2+BD2,∴t2=(8﹣t)2+62,解得t=.∴满足条件的t的值为.【题目点拨】本题属于三角形综合题,考查了等腰三角形的性质,三角形的面积,线段的垂直平分线的性质等知识,解题的关键是熟练掌握基本知识.24、(1)黄瓜和茄子各30千克、10千克;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论